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Abstract. Shoulder surfing attacks are an unfortunate consequence of
entering passwords or PINs into computers, smartphones, PoS termi-
nals, and ATMs. Such attacks generally involve observing the victim’s
input device. This paper studies leakage of user secrets (passwords and
PINs) based on observations of output devices (screens or projectors) that
provide “helpful” feedback to users in the form of masking characters,
each corresponding to a keystroke. To this end, we developed a new
attack called Secret Information Leakage from Keystroke Timing Videos
(SILK-TV). Our attack extracts inter-keystroke timing information from
videos of password masking characters displayed when users type their
password on a computer, or their PIN at an ATM or PoS. We conducted
several studies in various envisaged attack scenarios. Results indicate that,
while in some cases leakage is minor, it is quite substantial in others. By
leveraging inter-keystroke timings, SILK-TV recovers 8-character alphanu-
meric passwords in as little as 19 attempts. However, When guessing
PINs, SILK-TV yields no substantial speedup compared to brute force.
Our results strongly indicate that secure password masking GUIs must
consider the information leakage identified in this paper.

1 Introduction

Passwords and PINs are prevalent user authentication techniques primarily be-
cause they are easy to implement, require no special hardware, and users tend
to understand them well [11]. However, one of their inherent disadvantages
is susceptibility to shoulder surfing attacks [23] of which there are two main
types: (1) input-based and (2) output-based. The former is more common; in it,
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the adversary observes an input device (keyboard or keypad) as the user enters
a secret (password or PIN) and learns the key-presses. The latter involves the
adversary observing an output device (screen or projector) while the user enters
a secret which is displayed in cleartext. The principal distinction between the two
types is adversary’s proximity: observing input devices requires the adversary to
be closer to the victim than observing output devices, which tend to have larger
form factors, i.e., physical dimensions.

Completely disabling on-screen feedback during secret entry (as in, e.g., Unix
sudo command) mitigates output-based shoulder-surfing attacks. Unfortunately,
it also impacts usability: when deprived of visual feedback, users cannot deter-
mine whether a given key-press was registered and are thus more apt to make
mistakes. In order to balance security and usability, user interfaces typically
implement password masking by displaying a generic symbol (e.g., “•” or “∗”)
after each keystroke. This technique is commonly used on desktops, laptops and
smartphones as well as on public devices, such as Automated Teller Machines
(ATMs) or Point-of-Sale (PoS) terminals at shops or gas stations.

Despite the popularity of password masking, little has been done to quantify
how visual keystroke feedback impacts security. In particular, masking assumes
that showing generic symbols does not reveal any information about the corre-
sponding secret. This assumption seems reasonable, since visual representation of
a generic symbol is independent of the key-press. However, in this paper we show
that this assumption is incorrect. By leveraging precise inter-keystroke timing
information leaked by the appearance of each masking symbol, we show that
the adversary can significantly narrow down the user secret’s search space. Put
another way, the number of attempts required to brute-force a secret decreases
appreciably when the adversary has access to inter-keystroke timing information.

There are many realistic settings where visual inter-keystroke timing infor-
mation (leaked via appearance of masking symbols) is readily available while
the input information is not, i.e., the input device is not easily observable. For
example, in a typical lecture or classroom scenario, the presenter’s keyboard
is usually out of sight, while the external projector display is wide-open for
recording. Similarly, in a multi-person office scenario, an adversarial co-worker
can surreptitiously record the victim’s screen. The same holds in public scenarios,
such as PoS terminals and ATMs, where displays (though smallish) tend to be
easier to observe and record than entry keypads.

In this paper we consider two representative scenarios: (1) a presenter enters a
password into a computer connected to an external projector; (2) a user enters a
PIN at an ATM in a public location. The adversary is assumed to record keystroke
feedback from the projector display or an ATM screen using a dedicated video
camera or a smartphone. We note that a human adversary doess not need to be
present during the attack: recording might be done via an existing camera either
pre-installed or pre-compromised by the adversary, possibly remotely, e.g., as in
the infamous Mirai botnet [14].

Contributions. The main goal of this paper is to quantify the amount of in-
formation leaked through video recordings of on-screen keystroke feedback. To
this end, we conducted extensive data collection experiments that involved 84



subjects.4 Each subject was asked to type passwords or PINs while the screen
or projector was video-recorded using either a commodity video camera and a
smartphone camera. Based on this, we determined the key statistical properties
of resulting data, and set up an attack, called SILK-TV: Secret Information
Leakage from Keystroke Timing Videos. It allows us to quantify reduction in
brute-force search space due to timing information. SILK-TV leverages multiple
publicly available typing datasets to extract population timings, and applies this
information to inter-keystroke timings extracted from videos.

Our results show that video recordings can be effective in extracting precise
inter-keystroke timing information. Experiments show that SILK-TV substantially
reduces the search space for each password, even when the adversary has no access
to user-specific keystroke templates. When run on passwords, SILK-TV performed
better than random guessing between 87% and 100% of the time, depending on
the password and the machine learning technique used to instantiate the attack.
The resulting average speedup is between 25% and 385% (depending on the
password), compared to random dictionary-based guessing; some passwords were
correctly guessed in as few as 68 attempts. A single password timing disclosure
is enough for SILK-TV to successfully achieve these results. However, when the
adversary observes the user entering the password three times, SILK-TV can
crack the password in as few as 19 attempts. Clearly, SILK-TV ’s benefits depend
in part on the strength of a specific password. With very common passwords,
benefits of SILK-TV are limited. Meanwhile, we show that SILK-TV substantially
outperforms random guessing with less common passwords. With PINs, disclosure
of timing poses only a minimal risk – SILK-TV reduced the number of guessing
attempts by a mere 3.8%, on average.

Paper Organization. Section 2 overviews state-of-the-art in password guessing
based on timing attacks. Section 3 presents SILK-TV and the adversary model. Sec-
tion 4 discusses our data collection and experiments. We then present the results
on password guessing using SILK-TV in Section 5, and on PIN guessing in Section 6.
The paper concludes with the summary and future work directions in Section 7.

2 Related Work

There is a large body of prior work on timing attacks in the context of keyboard-
based password entry. Song et al. [21] demonstrated a weakness that allows the
adversary to extract information about passwords typed during SSH sessions. The
attack relies on the fact that, to minimize latency, SSH transmits each keystroke
immediately after entry, in a separate IP packet. By eavesdropping on such
packets, the adversary can collect accurate inter-keystroke timing information.
Authors in [21] showed that this information can be used to restrict the search
space of passwords. The impact of this work is significant, because it shows the
power of timing attacks on cracking passwords.

There are several studies of keystroke inference from analysis of video record-
ings. Balzarotti et al. [4] addressed the typical shoulder-surfing scenario, where a

4 Where required, IRB approvals were duly obtained prior to the experiments.



camera tracks hand and finger movements on the keyboard. Text was automati-
cally reconstructed from resulting videos. Similarly, Xu et al. [30] recorded user’s
finger movements on mobile devices to infer keystroke information. Unfortunately,
neither attack applies to our sample scenarios, where the keyboard is invisible
to the adversary.

Shukla et al. [20] showed that text can be inferred even from videos where the
keyboard/keypad is not visible. This attack involved analyzing video recordings
of the back of the user’s hand holding a smartphone in order to infer which
location on the screen is tapped. By observing the motion of the user’s hand,
the path of the finger across the screen can be reconstructed, which yields the
typed text. In a similar attack, Sun et al. [22] successfully reconstructed text
typed on tablets by recording and analyzing the tablet’s movements, rather than
movements of the user’s hands.

Another line of work aimed to quantify keystroke information inadvertently
leaked by motion sensors. Owusu et al. [16] studied this in the context of a
smartphone’s inertial sensors while the user types using the on-screen keyboard.
The application used to implement this attack does not require special privileges,
since modern smartphone operating systems do not require explicit authorization
to access inertial sensors data. Similarly, Wang et al. [27] explored keystroke infor-
mation leakage from inertial sensors on wearable devices, e.g., smartwatches and
fitness trackers. By estimating the motion of a wearable device placed on the wrist
of the user, movements of the user’s hand over a keyboard can be inferred. This
allows learning which keys were pressed during the hand’s path. Compared to our
work, both [16] and [27] require a substantially higher level of access to the user’s
device. To collect data from inertial sensors the adversary must have previously
succeeded in deceiving the user into installing a malicious application, or otherwise
compromised the user’s device. In contrast, SILK-TV is a fully passive attack.

Acoustic emanations represent another effective side-channel for keystroke
inference. This class of attacks is based on the observation that different keyboard
keys emit subtly different sounds when pressed. This information can be captured
(1) locally, using microphones placed near the keyboard [3,32], or (2) remotely, via
Voice-over-IP [8]. Also, acoustic emanations captured using multiple microphones
can be used to extract locations of keys on a keyboard. As shown by Zhou et
al. [31], recordings from multiple microphones can be used to accurately quantify
time difference of arrival (TDoA), and thus triangulate positions of pressed keys.

3 System and Adversary Model

We now present the system and adversary model used in the rest of the paper.

We model a user logging in (authenticating) to a computer system or an
ATM using a PIN or a password (secret) entered via keyboard or keypad (input
device). The user receives immediate feedback about each key-press from a screen,
a projector, or both (output device) in the form of dots or asterisks (masking
symbols). Shape and/or location of each masking symbol does not depend on
which key is pressed. The adversary can observe and record the output device(s),



though not the input device or the user’s hands. An example of this scenario is
shown in Figure 1. The adversary’s goal is to learn the user’s secret.

The envisaged attack setting is representative of many real-world scenarios
that involve low-privilege adversaries, including: (1) a presenter in a lecture or
conference who types a password while the screen is displayed on a projector. The
entire audience can see the timing of appearance of masking symbols, and the
adversary can be anyone in the audience; (2) an ATM customer typing a PIN. The
adversary who stands in line behind the user might have an unobstructed view
of the screen, and the timing of appearance of masking symbols (see Figure 2);
and (3) a customer enters her debit card PIN at a self-service gas-station pump.
In this case, the adversary can be anyone in the surroundings with a clear view
of the pump’s screen.

Although these scenarios seem to imply that adversary is located near the user,
proximity is not a requirement for our attack. For instance, the adversary could
watch a prior recording of the lecture in scenario (1); or, could be monitoring
the ATM machine using a CCTV camera in (2); or, remotely view the screen
in (3) through a compromised IoT camera.

Also, we assume that, in many cases, the attack involves multiple observations.
For example, in scenario (1), the adversary can observe the presenter during
multiple talks, without the presenter changing passwords between talks. Similarly,
in scenario (2), customers often return to the same ATM.

Fig. 1. Example attack scenario.

(a) (b)

Fig. 2. Attack example – ATM setting.
(a) Adversary’s perspective. (b) Out-
sider’s perspective.

4 Overview and Data Collection

Recall that SILK-TV confines the information about the secret that the adversary
can capture to inter-keystroke timings leaked by the output device while the
user types a secret. The goal is to analyze differences between the distribution
of inter-keystroke timings and infer corresponding keypairs. This data is used
to identify the passwords that are most likely to be correct, thus restricting the
brute-force search space of the secret. To accurately extract inter-keystroke timing
information, we analyze video feeds of masking symbols, and identify the frame



where each masking symbol first appears. In this setting, accuracy and resolution
of inter-keystroke timings depends on two key factors: refresh frequency of the
output device, and frame rate of the video camera. Inter-keystroke timings are
then fed to a classifier, where classes of interest are keypairs. Since we assume that
the adversary has no access to user-specific keystroke information, the classifier
is trained on population data, rather than on user-specific timings.

In the rest of this section, we detail the data collection process. We collected
password data from two types of output devices: a VGA-based external projector,
and LCD screens of several laptop computers. See Section 4.1 for details of these
devices and corresponding procedures. For PIN data, we video-recorded the
screen of a simulated ATM. Details can be found in Section 4.2.

4.1 Passwords

We collected data using an EPSON EMP-765 projector, and using the LCD
screens of the subjects’ laptops computers. In the projector setting, we asked the
subjects to connect their own laptops so they would be using a familiar keyboard.
The refresh rate of both laptop and projector screens were set to 60 Hz – the
default setting for most systems. This setting introduces quantization errors of up
to about 1/60 s ≈ 16.7 ms. Thus, events happening within the same refresh window
of 16.7ms are indistinguishable. We recorded videos of the screen and the projector
using the rear-facing camera of two smartphones: Samsung Galaxy S5 and iPhone
7 Plus. With both phones, we recorded videos at 120 frames per second, i.e., 1
frame every 8.3 ms. To ease data collection, we placed the smartphones on a tripod.
When recording the projector, the tripod was placed on a table, filming from a
height of about 165 cm, to be horizontally aligned with respect to the projected
image. When recording laptop screens, we placed the smartphone above and to
the side of the subject, in order to mimic the adversary sitting behind the subject.

All experiments took place indoors, in labs and lecture halls at the authors’
institutions. We recruited a total of 62 subjects, primarily from the student
population of two large universities. Most participants were males in their 20s,
with a technical background and good typing skills. We briefed each subject
on the nature of the experiment, and asked them to type four alphanumerical
passwords: “jillie02”, “william1”, “123brian”, and “lamondre”.We selected
these passwords uniformly at random from the RockYou dataset [1] in order to
simulate realistic passwords. The subjects typed each password three times, while
our data collection software recorded ground-truth keystroke timings of correctly
typed passwords with millisecond accuracy. Timings from passwords that were
typed incorrectly were discarded, and subjects were prompted to re-type the
password whenever a mistake was made. The typing procedure lasted between 1
and 2 minutes, depending on the subject’s typing skills. All subjects typed with
the “touch typing” technique, i.e., using fingers from both hands.

4.2 PINs

We recorded subjects entering 4-digit PINs on a simulated ATM, shown in Figure 3.
Our dataset was based on experiments with 22 participants; 19 subjects completed



three data collection sessions, while 4 subjects completed only one session,
resulting in a total of 61 sessions. At the beginning of each session, the subject
was given 45 seconds to get accustomed with the keypad of the ATM simulator.
During this time, they were free to type as they pleased. Next, a subject was
shown a PIN on the screen for ten seconds (Figure 4a), and, once it disappeared
from the screen, asked to enter it four times (Figure 4b). Subjects were advised
not to read the PINs out loud. This process was repeated for 15 consecutive PINs.
During each session, subjects were presented with the same 15-PIN sequence 3
times. Subjects were given a 30-second break at the end of each sequence.

Fig. 3. Setup used in PIN inference
experiments.

(a) (b)

Fig. 4. ATM Simulator during a data
collection session. (a) The simulator dis-
plays the next PIN. (b) A subject types
the PIN from memory.

. Specific 4-digit PINs were selected to test whether: (1) inter-keypress time
is proportional to Euclidean Distance between keys on the keypad; and (2) the
direction of movement (up, down, left, or right) between consecutive keys in a
keypair impacts the corresponding inter-key time. We show an example of these
two situations on the ATM keypad in Figure 5. We chose a set of PINs that
allowed collection of a significant number of key combinations appropriate for
testing both hypotheses. For instance, PIN 3179 tested horizontal and vertical
distance two, while 1112 tested distance 0 and horizontal distance 1.

Sessions were recorded using a Sony FDR-AX53 camera, with the pixel reso-
lution of 1,920×1,080 pixels, and 120 frames per second. At the same time, ATM
simulation software collected millisecond-accurate inter-key distance ground truth
by logging each keypress. PIN feedback was shown on a DELL 17” LCD screen
with a refresh rate of 60 Hz, which resulted to each frame being shown for 16.7 ms.

4.3 Timing Extraction from Video

We developed software that analyzes video recordings to automatically detect
appearance of masking symbols and log corresponding timestamps. This software
uses OpenCV [17] to infer the number of symbols present in each image. All frames
are first converted to grayscale, and then processed through a bilateral filter [25]



to reduce noise due to the camera’s sensor. Resulting images are analyzed using
Canny Edge detection [9] to capture the edges of the masking symbol. External
contours are compared with the expected shape of the masking symbol. When
a masking symbol is detected, software logs the corresponding frame number.

Our experiments show that this technique leads to fairly accurate inter-
keystroke timing information. We observed average discrepancy of 8.7 ms (stdev
of 26.6 ms) between the inter-keystroke timings extracted from the video and
ground truth recorded by the ATM simulator. Furthermore, 75% of inter-keystroke
timings extracted by the software had errors under 10 ms, and 97% had errors
under 20 ms. Similar statistics hold for data recorded on keyboards for the
passwords setting. Figure 6 shows the distribution of error discrepancies.

5 Password Guessing Using SILK-TV

SILK-TV treats identifying digraphs from keystroke timings as a multi-class
classification problem, where each class represents one digraph, and input to the
classifier is a set of inter-keystroke times. Without loss of generality, in this section,
we assume that the user’s password is a sequence of lowercase alphanumeric
characters typed on a keyboard with a standard layout.

To reconstruct passwords, we compared two classifiers: Random Forest
(RF) [13] and Neural Networks (NN) [19]. RF is a well-known classification
technique that performs well for authentication based on keystroke timings [6].
Input to RF is one inter-keystroke timing, and its output is a list of N digraphs
ranked based on the probability of corresponding to input timing. NN is a
more complex architecture designed to automatically determine and extract
complex features from the input distribution. In our experiments, the input to
NN is a list of inter-keystroke timings corresponding to a password. This enables
NN to extract features, such as arbitrary n-grams, or timings corresponding to
non-consecutive characters. NN’s output is a guess for the entire password.

(a) (b)

Fig. 5. ATM keypad in our experiments.
(a) To type keypairs 1-2 and 1-4, the typing
finger travels the same distance in differ-
ent directions. (b) Keypairs 1-2 and 1-3
require the typing finger to travel different
distances in the same direction.
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We instantiated NN using the following parameters:
– number of units in the hidden layer – 128 (with ReLU activation functions);
– inclusion probability of the dropout layer – 0.2;
– number of input neurons – 25;
– number of output layers – 25 which represents one character in one-hot

encoding. Output layers use softmax activation function;
– training was performed using batch sizes of 40 and 100 epochs. We used the

Adam optimizer with a learning rate of 0.001.

Classifier Training. We trained SILK-TV on three public datasets [26,18,5] that
contain keystroke timing information collected from English free-text. Using these
datasets for training, we modeled an attack that relies exclusively on population
data. Without loss of generality, we filtered the datasets to remove all timings that
do not correspond to digraphs composed of alphanumeric lowercase characters.
This is motivated by the datasets’ limited availability of digraph samples that
contain special characters. In practice, the adversary could collect these timings
using, for instance, crowdsourcing tools such as Amazon Mechanical Turk. To take
care of uneven frequencies of different digraphs, we under-represented the most
frequent digraphs in the dataset. Data in public datasets was often gathered from
free-text typing of volunteers. Therefore, more frequent digraphs in English were
represented more than rarer ones. For example, considering lamondre, digraph re

appears 43,606 times in the population dataset, while am – only 6,481. Similarly,
in 123brian, digraph ri occurs 19,782 times, while 3b – only 138. We therefore
under-sampled each digraph appearing more than 1,000 times to 1,000 randomly
selected occurrences. Similarly, we excluded infrequent digraphs that appeared
under 100 times in the whole dataset.

Attack Process. To infer the user’s secret from inter-keystroke timings, SILK-
TV leverages a dictionary of passwords (e.g., a list of passwords leaked by online
services [1,10,24,2]), possibly expanded using techniques such as probabilistic
context-free grammars [29] and generative adversarial networks [12]. When eval-
uating SILK-TV, we assume that the user’s secret is in the dictionary. In practice,
this is often the case, as many users use the same weak passwords (e.g., only
36% of the password of RockYou is unique [15]), and reuse them across many
different services [28,11]. Given that the size of a reasonable password dictionary
is on the order of billions of entries,5 the goal of SILK-TV is to narrow down
the possible passwords to a small(er) list, e.g., to perform online attacks. This
list is then ranked by the probability associated with each entry, computed from
inter-keystroke timing data. Specifically:

1. Using RF, for each inter-key time extracted from video (corresponding to
a digraph), SILK-TV returns a list of N possible guesses, sorted by the clas-
sifier’s confidence. Next, SILK-TV ranks the passwords in the dictionary by
resulting probabilities as follows: for each password, SILK-TV identifies the
position in the ranked list of predictions for the first digraph of the password
being guessed, and assigns that position as a “penalty” to the password. By

5 See for example the lists maintained by https://haveibeenpwned.com/.
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performing these steps for each digraph, SILK-TV obtains a total penalty
score for each password, i.e., a score that indicates the probability of the
password given the output of the RF.
For example, to rank the password jillie02, SILK-TV first considers the
digraph ji, and the list of predictions of RF for the first digraph. It notes
that ji appears in such list as the X-th most probable; therefore, it assigns
X as the penalty for jillie02. Then, it considers il, which appears in
Y -th position in the list of predictions for the second digraph. Penalty for
jillie02 is thus updated to X + Y . This operation is repeated for all the
7 digraphs, thus obtaining the final penalty score.

2. Using NN, SILK-TV computes a list of N possible guesses, sorted by the clas-
sifier’s confidence of each guess. In this case, the SILK-TV processes the entire
list of flight times at once, rather than refining its guess with each digraph.

We considered the following attack settings: single-shot, and multiple recordings.
With the former, the adversary trains SILK-TV with inter-keystroke timings
from population data, i.e., from users other than the target, e.g., from publicly
available datasets, or by recruiting users and asking them to type passwords. In
this scenario, the adversary has access to the video recording of a single password
entry session. With multiple recordings, the adversary trains SILK-TV as before,
and additionally, has access to videos of multiple login instances by the same user.

Training SILK-TV exclusively with population data leads to more realistic
attack scenarios than training it with user-specific data, because usually the
adversary has limited access to keystrokes samples from the target user. Further,
access to user-specific data will likely improve the success rate of SILK-TV.

5.1 Results

In this section, we report on SILK-TV efficacy in reducing search time on the
RockYou [1] password dataset compared to random choice, weighted by prob-
ability. We restricted experiments to the subset of 8-character passwords from
RockYou, since the adversary can always determine password length by counting
the number of masking symbols shown on the screen. This resulted in 6,514,177
passwords, out of which 2,967,116 were unique.

Attack Baseline. To establish the attack baseline, we consider an adversary that
outputs password guesses from a leaked dataset in descending order of frequency.
(Ties are broken using random selection from the candidate passwords.) Because
password probabilities are far from uniform (e.g., in RockYou, top 200 8-character
passwords account for over 10% of the entire dataset), this is the best adversarial
strategy given no additional information on the target user.

Passwords selected for our evaluation represent a mix of common and rare
passwords. Thus, they have widely varying frequencies of occurrence in RockYou
and expected number of attempts needed to guess each password using the baseline
attack varies significantly. For example, expected number of attempts for:
– 123brian (appears 6 times) – 93,874;
– jillie02, (appears only once) – 1,753,571;
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– lamondre (appears twice) – 397,213;
– william1 (appears 1,164 times) – only 187.

Single-shot. Results in the single-shot setting are summarized in Table 1. Cumu-
lative Distribution Function (CDF) of successfully recovered passwords is reflected
in Figure 7, and breakdown of results (by target password) is shown in Figure 8.

Results show that, for uncommon passwords (jillie02 and lamondre), SILK-
TV consistently outperforms random guessing. In particular, for jillie02 both
RF and NN greatly exceed random guessing, since both their curves in Figure
8 are above random guess baseline. For lamondre, RF shows an advantage over
random guess in 76% of the instances, while NN never beats the baseline.

For common passwords, sorted random guess wins over SILK-TV. In partic-
ular, 123brian is both popular (i.e., 93,874-th most popular password of the
set, corresponding to the top 3% of the RockYou dataset) and very hard to
recover with SILK-TV. This can be observed from Figure 8, where the curves
corresponding to 123brian are least steep. Finally, william1, being the 187-th
most popular password, is always recovered early in our baseline attack, with
the notable exception of one instance by RF.

In general, SILK-TV wins over the sorted random guess on infrequent pass-
words, such as jillie02 and lamondre, that appear only once or twice, respec-
tively. Such infrequent passwords exhibit the same random guess baseline curve
and average, reported in Table 1 and shown in Figure 8. Given the similar steep-
ness of CDF curves in Figure 8, which hint that SILK-TV ’s performance might be
similar for many other passwords, SILK-TV can probably outperform the baseline
for uncommon passwords. We also note that uncommon passwords represent the
vast majority of user-chosen passwords: 90% of RockYou passwords appear at most
twice, and 80% exactly once. We expect that a realistic adversary would first gen-
erate password guesses based on their frequency alone (as in our baseline attack),
and then switch to SILK-TV once these frequencies drop below some threshold.



Table 1. SILK-TV—Single-shot setting. Avg : average number of attempts to guess a
password; Stdev : standard deviation; Rnd : number of guesses for the baseline adversary;
<Rnd : how often SILK-TV outperforms random guessing; Best : number of attempts
of the best guess; < n: how many passwords are successfully guessed within first
n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random Forest

123brian 581,743 414,761 508,332 93,874 8.7% 5,535 1.1% 9.3%

jillie02 749,718 448,319 656,754 1,753,571 97.8% 28,962 0.0% 2.7%

lamondre 301,906 334,681 199,344 397,213 75.0% 145 13.0% 33.7%

william1 246,437 264,090 145,966 187 0.5% 68 10.9% 39.9%

Neural Network

123brian 923,534 165,454 886,802 93,874 0.0% 577,739 0.0% 0.0%

jillie02 456,811 210,512 383,230 1,753,571 100.0% 164,754 0.0% 0.0%

lamondre 517,472 189,355 493,713 397,213 28.8% 148,403 0.0% 0.0%

william1 265,813 140,753 215,840 187 0.0% 45,176 0.0% 3.8%

Finally, we highlight that random guess baseline is computed on the distribu-
tion of passwords in RockYou. Other datasets might have different distributions:
for example, in the 10 million password list dataset [7], jillie02, lamondre,
and 123brian appear only once, while william1 appears 176 times.

We believe that the discrepancy between performance of SILK-TV on various
passwords is due to how frequently the digraphs in each password appear in
training data. Specifically, even with our under-representation, all digraphs in
william1, with the exception of m1, are far more frequent in the training data
than 12, 23, 3b, or 02.

Regarding specific classifiers, RF overtakes NN in most instances. For example,
when guessing 123brian (Figure 8a), NN performs worse than random guessing
for first 800,000 attempts. Afterwards, NN outperforms both random guessing
and RF. Furthermore, while RF can guess a substantial percentage of passwords
within 20,000, 50,000 and 100,000 attempts, NN cannot achieve the same result.

In terms of minimum number of guesses per password, RF recovered william1

in 68, lamondre in 145, 123brian in 5,535, and jillie02 in 28,962 attempts. NN
required a consistently higher minimum number of attempts for each password.

Multiple Recordings. Information from three login instances was used as fol-
lows. We averaged classifiers’ predictions over three login instances for a given
user, and ranked passwords accordingly.
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(a) 123brian (183 auth. attempts).
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(b) jillie02 (186 auth. attempts).
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(c) lamondre (184 auth. attempts).
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(d) william1 (183 auth. attempts).

Fig. 8. CDF for the number of passwords recovered by SILK-TV, for each target
password. Plots also show the baseline attack for the corresponding password.

Results are summarized in Table 2, and Figure 9. Although SILK-TV still
consistently outperforms random guessing, using data from multiple authenti-
cation recordings leads to mostly identical results overall with both RF and NN.
SILK-TV ’s guessing success rate for 123brian and jillie02 is slightly improved
compared to the previous setting and minimum number of attempts to recover
each password diminished slightly. We recovered william1 in 19, lamondre in
404, 123brian in 13,931, and jillie02 in 67,875 attempts. Overall, results show
that there are no substantial benefits in using timing data from three recordings
from the same user.

6 PIN Guessing Using SILK-TV

We now discuss PIN-related results, specifically, relationships between: (1) inter-
keystroke timings and Euclidean Distance between consecutive keys, and (2)
inter-keystroke timings and direction of movement on the keypad.

We are not aware of any publicly-available PIN timing datasets that can be
used to train SILK-TV. To address this issue, we divided our dataset in two parts.



Table 2. SILK-TV—Multiple recordings setting. Avg : average number of attempts to
guess a password; Stdev : standard deviation; Rnd : number of guesses for the baseline
adversary; <Rnd : how often SILK-TV outperforms random guessing; Best : number of
attempts of the best guess; < n: how many passwords are successfully guessed within
first n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random Forest

123brian 552,574 468,539 402,166 93,874 14.1% 13,931 4.7% 14.1%

jillie02 713,895 410,225 606,403 1,753,571 100.0% 67,875 0.0% 1.6%

lamondre 398,186 425,811 236,905 397,213 65.6% 404 6.2% 25.0%

william1 370,933 602,654 148,405 187 1.6% 19 17.2% 42.2%

Neural Network

123brian 922,655 129,927 889,406 93,874 0.0% 676,418 0.0% 0.0%

jillie02 439,414 155,385 402,332 1,753,571 100.0% 205,645 0.0% 0.0%

lamondre 503,248 137,276 504,493 397,213 21.3% 182,123 0.0% 0.0%

william1 248,769 103,240 216,630 187 0.0% 86,213 0.0% 1.6%

The first was used as training, and the second – as testing, data. To compute
the attack baseline, we considered all PINs to be equally likely.

Distance. Across all subjects, we observed that distributions of inter-keystroke
latencies were distinct in all cases (for p-value < 5 · 10−6), with the following
exceptions: (1) latencies for distance 2 (e.g., keypair 1-3) were close to latencies
for distance 3 (keypair 2-0); (2) latencies for distance 2 were close to latencies for
diagonal 1×1 (e.g., keypair 4-8); latencies for distance 3 were close to latencies
for 2×1 diagonal (i.e. “2” to “9”, “1” to “6”, etc.), and diagonal 2×2 (e.g.,
keypair 7-3), and diagonal 3×2 (e.g., keypair 3-0). Figure 10a shows the various
probability distributions, while Figure 10b models these different probability
distribution functions as gamma distributions. In Figure 10a, dist zero indicates
keypairs composed of the same two digits. dist one, dist two, and dist three shows
timings distributions for keypairs with horizontal or vertical distance one (e.g.,
keypair 2-5), two (e.g., 2-8), and three (2-0), respectively. dist diagonal one and
dist diagonal two indicates keypairs with diagonal distance one (e.g., 2-4) and
distance two (e.g., 1-9), respectively. dist dogleg and dist long dogleg show timing
distributions of keypairs such as 1-8 and 0-3. In Figure 10b, dist one horizontal and
dist one vertical indicate Euclidean Distance right in the left/right directions, and
up/down directions, respectively, while dist one up, dist one down, dist one left,
and dist one right indicate distances one in the up, down, left, and right directions.
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Fig. 9. CDF showing number of passwords recovered by SILK-TV in the Multiple
recordings scenario.

0 100 200 300 400 500 600 700

Interkey Time (ms)

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

Fr
e
q

u
e
n
cy

dist_zero
n = 1975

dist_one
n = 5859

dist_two
n = 4095

dist_three
n = 1696

dist_diagonal_one
n = 2279

dist_diagonal_two
n = 1373

dist_dogleg
n = 4522

dist_long_dogleg
n = 1689

(a) From raw data.
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Fig. 10. Inter-keystroke timings of all possible distances for ATM keypad typing.

Direction The relative orientation of key pairs characterized by the same Eu-
clidean distance (e.g., 2-3 vs. 2-5) has a negligible impact on the corresponding
inter-key latency. We observed that the distributions of keypress latencies ob-
served from each possible direction between keys were not significantly different
(for p-value < 10−4). Figure 11 shows different probability distributions relative
to various directions for Euclidean distance 1.

6.1 Pin Inference

Using the data we collected, we mapped the distribution of inter-keypress la-
tencies, and used the resulting probabilities to test the effectiveness of PINs
prediction from inter-key latencies.

To guess PINs from our inter-key latencies, we used data from 14 users to
model the inter-key latencies as gamma distributions. Then, we tested the data
from the remaining users. Figure 12 shows the effectiveness of these predictions
compared to brute-force guesses. Due to the lack of separation between the
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Fig. 12. CDF showing the number of PINs
recovered by SILK-TV, compared to the
baseline.

distribution of most distances and directions, the improvement compared to
brute force is small (in the -1% to 4% range), leading to an average reduction
in guessing attempts of about 3.8%.

7 Conclusion

In this paper, we have shown that inter-key timing information disclosed by
showing password masking symbols can be effectively used to reduce the cost
of password guessing attacks. To determine the impact of this side channel, we
recorded videos from 84 subjects, typing several passwords and PINs under dif-
ferent conditions: in a lecture hall, while their laptop was collected to a projector;
in a classroom setting; and using a simulated ATM machine. Our results show
that: (1) it is possible to infer very accurate timing information from videos of
LCD screens and projectors (the average error was 8.7ms, which is corresponds
with the duration of a frame when the refresh rate of a display is set to 60 Hz);
(2) inter-keystroke timings reduce the number of attempts to recover a password
by 25% and 385%, with some passwords guessed within 19 attempts. We consider
this a substantial reduction in the cost of password guessing attacks, to the point
that we believe that masking symbols should not be publicly displayed when
typing passwords; and (3) disclosing inter-keystroke timings have a relatively
small impact on PIN guessing attacks (the average reduction in the number of
attempts required to guess a 4-digit PIN was 3.8%).

Clearly, the benefits of SILK-TV compared to our baseline attack vary depend-
ing on how common the user’s password is. For very common (and therefore very
easy to guess) passwords, our results show that SILK-TV might not be needed. On
the other hand, the speedup offered by SILK-TV when guessing rare passwords
is substantial. Given the effectiveness of this attack on password guessing, we
think that future work should consider countermeasures that strike the right
balance between usability and security when displaying masking symbols. For
instance, GUIs may not display masking symbols on a secondary screen (e.g.,



projectors), or may display new masking symbols at fixed intervals (say, every
250ms). Clearly, both countermeasures have usability implications, and we leave
the quantification of this impact to future work.

Acknowledgements

Kiran Balagani and Paolo Gasti were supported but the National Science Founda-

tion under Grant No. CNS-1619023. Tristan Gurtler, Charissa Miller, Kendall Mo-

las, and Lynn Wu were supported by the National Science Foundation under Grant

No. CNS-1559652. This work is partially supported by the EU TagItSmart! Project

(agreement H2020-ICT30-2015-688061), and the EU-India REACH Project (agreement

ICI+/2014/342-896).

References

1. Rockyou password leak (2010), http://downloads.skullsecurity.org/

passwords/rockyou.txt.bz2

2. Linkedin password leak (2016), https://hashes.org/leaks.php
3. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE S&P (2004)
4. Balzarotti, D., Cova, M., Vigna, G.: Clearshot: Eavesdropping on keyboard input

from video. In: IEEE S&P (2008)
5. Banerjee, R., Feng, S., Kang, J.S., Choi, Y.: Keystroke patterns as prosody in

digital writings: A case study with deceptive reviews and essays. In: EMNLP.
Association for Computational Linguistics (2014)

6. Bartlow, N., Cukic, B.: Evaluating the reliability of credential hardening through
keystroke dynamics. In: IEEE ISSRE (2006)

7. Burnett, M.: Today i am releasing 10 million passwords (2015), https:

//xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495

8. Compagno, A., Conti, M., Lain, D., Tsudik, G.: Don’t skype & type!: Acoustic
eavesdropping in voice-over-ip. In: ACM ASIACCS (2017)

9. Ding, L., Goshtasby, A.: On the canny edge detector. Pattern Recognition 34(3),
721–725 (2001)

10. Fiegerman, S.: Yahoo says 500 million accounts stolen (2017), http:

//money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html

11. Florencio, D., Herley, C.: A large-scale study of web password habits. In: ACM
WWW (2007)

12. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: Passgan: A deep learning
approach for password guessing. arXiv preprint arXiv:1709.00440 (2017)

13. Ho, T.K.: Random decision forests. In: IEEE Document Analysis and Recognition
(1995)

14. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the iot: Mirai and
other botnets. Computer 50(7), 80–84 (2017)

15. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
IEEE S&P (2014)

16. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: Accessory: password inference
using accelerometers on smartphones. In: ACM HotMobile (2012)

17. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision
with opencv. Communications of the ACM 55(6), 61–69 (2012)

http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://hashes.org/leaks.php
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html


18. Roth, J., Liu, X., Metaxas, D.: On continuous user authentication via typing
behavior 23(10), 4611–4624 (October 2014)

19. Schalkoff, R.J.: Artificial neural networks, vol. 1. McGraw-Hill New York (1997)
20. Shukla, D., Kumar, R., Serwadda, A., Phoha, V.V.: Beware, your hands reveal

your secrets! In: ACM CCS (2014)
21. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks

on ssh. In: USENIX Security Symposium (2001)
22. Sun, J., Jin, X., Chen, Y., Zhang, J., Zhang, Y., Zhang, R.: Visible: Video-assisted

keystroke inference from tablet backside motion. In: NDSS (2016)
23. Tari, F., Ozok, A., Holden, S.H.: A comparison of perceived and real shoulder-surfing

risks between alphanumeric and graphical passwords. In: ACM SOUPS (2006)
24. The Password Project: (2017), http://thepasswordproject.com/leaked_

password_lists_and_dictionaries

25. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE
Computer Vision (1998)

26. Vural, E., Huang, J., Hou, D., Schuckers, S.: Shared research dataset to support
development of keystroke authentication. In: IEEE IJCB (2014)

27. Wang, C., Guo, X., Wang, Y., Chen, Y., Liu, B.: Friend or foe?: Your wearable
devices reveal your personal pin. In: ACM ASIACCS (2016)

28. Wang, C., Jan, S.T., Hu, H., Bossart, D., Wang, G.: The next domino to fall: Em-
pirical analysis of user passwords across online services. In: ACM CODASPY (2018)

29. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: IEEE S&P (2009)

30. Xu, Y., Heinly, J., White, A.M., Monrose, F., Frahm, J.M.: Seeing double:
Reconstructing obscured typed input from repeated compromising reflections. In:
ACM CCS (2013)

31. Zhu, T., Ma, Q., Zhang, S., Liu, Y.: Context-free attacks using keyboard acoustic
emanations. In: ACM CCS (2014)

32. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM
TISSEC 13(1), 3 (2009)

http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://thepasswordproject.com/leaked_password_lists_and_dictionaries

	SILK-TV: Secret Information Leakage from Keystroke Timing Videos

