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Abstract— We introduce hand movement, orientation, and
grasp (HMOG), a set of behavioral features to continuously
authenticate smartphone users. HMOG features unobtrusively
capture subtle micro-movement and orientation dynamics result-
ing from how a user grasps, holds, and taps on the smartphone.
We evaluated authentication and biometric key generation (BKG)
performance of HMOG features on data collected from 100 sub-
jects typing on a virtual keyboard. Data were collected under two
conditions: 1) sitting and 2) walking. We achieved authentication
equal error rates (EERs) as low as 7.16% (walking) and 10.05%
(sitting) when we combined HMOG, tap, and keystroke features.
We performed experiments to investigate why HMOG features
perform well during walking. Our results suggest that this is
due to the ability of HMOG features to capture distinctive
body movements caused by walking, in addition to the hand-
movement dynamics from taps. With BKG, we achieved the
EERs of 15.1% using HMOG combined with taps. In com-
parison, BKG using tap, key hold, and swipe features had
EERs between 25.7% and 34.2%. We also analyzed the energy
consumption of HMOG feature extraction and computation.
Our analysis shows that HMOG features extracted at a 16-Hz
sensor sampling rate incurred a minor overhead of 7.9% without
sacrificing authentication accuracy. Two points distinguish our
work from current literature: 1) we present the results of a
comprehensive evaluation of three types of features (HMOG,
keystroke, and tap) and their combinations under the same
experimental conditions and 2) we analyze the features from three
perspectives (authentication, BKG, and energy consumption on
smartphones).

Index Terms— Behavioral biometrics, continuous authentica-
tion, biometric key generation, energy evaluation, HMOG.
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I. INTRODUCTION

CURRENTLY, popular smartphone authentication
mechanisms such as PINs, graphical passwords, and

fingerprint scans offer limited security. They are susceptible
to guessing [1] (or spoofing [2] in the case of fingerprint
scans), and to side channel attacks such as smudge [3],
reflection [4], and video capture [5] attacks. Additionally, a
fundamental limitation of PINs, passwords, and fingerprint
scans is that they are well-suited for one-time authentication,
and therefore are commonly used to authenticate users at
login. This renders them ineffective when the smartphone is
accessed by an adversary after login. Continuous or active
authentication addresses these challenges by frequently and
unobtrusively authenticating the user via behavioral biometric
signals, such as touchscreen interactions [6], hand movements
and gait [7], [8], voice [9], and phone location [10].

In this paper, we present Hand Movement, Orientation, and
Grasp (HMOG), a new set of behavioral biometric features
for continuous authentication of smartphone users. HMOG
uses accelerometer, gyroscope, and magnetometer readings
to unobtrusively capture subtle hand micro-movements and
orientation patterns generated when a user taps on the screen.

HMOG features are founded upon two core building blocks
of human prehension [11]: stability grasp, which provides
stability to the object being held; and precision grasp, which
involves precision-demanding tasks such as tapping a target.
We view the act of holding a phone as a stability grasp and the
act of touching targets on the touchscreen as a precision grasp.
We hypothesize that the way in which a user “distributes” or
“shares” stability and precision grasps while interacting with
the smartphone results in distinctive movement and orientation
behavior. The rationale for our hypothesis comes from the
following two bodies of research.

First, there is evidence (see [12]–[14]) that users have
postural preferences for interacting with hand-held devices
such as smartphones. Depending upon the postural preference,
it is possible that the user can have her own way of achieving
stability and precision—for example, the user can achieve
both stability and precision with one hand if the postural
preference involves holding and tapping the phone with the
same hand; or distribute stability and precision between both
hands, if the posture involves using both hands for holding and
tapping; or achieve stability with one hand and precision with
the other.

Second, studies in ergonomics, biokinetics, and human-
computer interaction have reported that handgrip strength
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strongly correlates with an individual’s physiological and
somatic traits like hand length, handedness, age, gender,
height, body mass, and musculature (see, e.g., [15]–[17]).
If the micro-movements caused by tapping reflect an indi-
vidual’s handgrip strength, then the distinctiveness of HMOG
may have roots, at least in part, in an individual’s distinctive
physiological and somatic traits.

Motivated by the above, we designed 96 HMOG features
and evaluated their continuous user authentication and bio-
metric key generation performance during typing. Because
walking has been shown to affect typing performance [18],
we evaluated HMOG under both walking and sitting
conditions.

A. Contributions and Novelty of This Work

1) New HMOG Features for Continuous Authentication:
We propose two types of HMOG features: resistance fea-
tures, which measure the micro-movements of the phone in
response to the forces exerted by a tap gesture; and stability
features, which measure how quickly the perturbations in
movement and orientation, caused by tap forces, dissipate.
Our extensive evaluation of HMOG features on a dataset of
100 users1 who typed on the smartphone led to the following
findings: (1) HMOG features extracted from accelerometer
and gyroscope signals outperformed HMOG features from
magnetometer; (2) Augmenting HMOG features with tap
characteristics (e.g., tap duration and contact size) lowered
equal error rates (EERs): from 14.34% to 11.41% for sitting,
and from 14.73% to 8.53% for walking. This shows that
combining tap information with HMOG features considerably
improves authentication performance; and (3) HMOG features
complement tap and keystroke dynamics features, especially
for low authentication latencies at which tap and keystroke
dynamics features fare poorly. For example, for 20-second
authentication latency, adding HMOG to tap and keystroke
dynamics features reduced the equal error rate from 17.93%
to 11.74% for walking and from 19.11% to 15.25% for sitting.

2) Empirical Investigation Into Why HMOG Authentication
Performs Well During Walking: HMOG features achieved
lower authentication errors (13.62% EER) for walking com-
pared to sitting (19.67% EER). We investigated why HMOG
had a superior performance during walking by comparing the
performance of HMOG features during taps and between taps
(i.e., the segments of the sensor signal that lie between taps).
Our results suggest that the higher authentication performance
during walking can be attributed to the ability of HMOG
features to capture distinctive movements caused by walking
in addition to micro-movements caused by taps.

3) BKG With HMOG Features: BKG is closely related to
authentication, but has a different objective: to provide cryp-
tographic access control to sensitive data on the smartphone.
We believe that designing a secure BKG scheme on smart-
phones is very important, because the adversary is usually
assumed to have physical access to the device, and therefore
cryptographic keys must not be stored on the smartphone’s

1We made the dataset available at http://www.cs.wm.edu/~qyang/hmog.html.
We also described the data and its release in [19].

memory—but rather generated from biometric signals and/or
passwords.

To our knowledge, we are the first to evaluate BKG on
smartphones. We instantiated BKG using normalized general-
ized Reed-Solomon codes in Lee metric. (See section VI for
formulation and evaluation.) We compared BKG on HMOG to
BKG on tap, key hold, and swipe features under two metrics:
equal error rate (EER) and guessing distance.

Our results on BKG can be summarized as follows: we
achieved lower EERs with HMOG features compared to
key hold, tap, and swipe features in both walking and sit-
ting conditions. For walking, EER of HMOG-based BKG
was 17%, vs. 29% with key hold and 28% with tap features.
By combining HMOG and tap features, we achieved 15.1%
EER. For sitting, we obtained an EER of 23% with HMOG
features, 26% with tap features, and 20.1% by combining
both. In contrast, we obtained 34% EER with swipes. HMOG
features also provided higher guessing distance (i.e., 2.9 for
walking, and 2.8 for sitting) than all other features extracted
from our dataset (1.9 for taps and for key holds in walking
and 1.6 for taps in sitting conditions).

4) Energy Consumption Analysis of HMOG Features:
Because smartphones are energy constrained, it is crucial
that a continuous user authentication method consumes as
little energy as possible, while maintaining the desired level
of authentication performance. To evaluate the feasibility of
HMOG features for continuous authentication on smartphones,
we measured the energy consumption of accelerometer and
gyroscope, sampled at 100Hz, 50Hz, 16Hz and 5Hz. We then
measured the energy required for HMOG feature computation
from sensor signals, and reported the tradeoff between energy
consumption and EER.

Our analysis shows that a balance between authentication
performance and energy overhead can be achieved by sampling
HMOG features at 16Hz. The energy overhead with 16Hz
is 7.9%, compared to 20.5% with 100Hz sampling rate, but
comes with minor increase (ranging from 0.4% to 1.8%) in
EERs. However, by further reducing the sampling rate to 5Hz,
we observed a significant increase in EER (11.0% to 14.1%).

B. Organization

We present the description of HMOG features in Section II,
and details on our dataset in Section III. In sections IV and V,
we describe the authentication experiments and present
results. We introduce and evaluate BKG on HMOG in
Section VI. We analyze the energy consumption of HMOG
features in Section VII. In Section VIII, we review related
research. We conclude in Section IX.

II. DESCRIPTION OF HMOG FEATURES

We define two types of HMOG features: grasp resistance
and grasp stability. These features are computed from data
collected using three sensors: accelerometer, gyroscope, and
magnetometer. Because HMOG features aim to capture the
subtle micro-movements and orientation patterns of a user
while tapping on the screen, we extract HMOG features from
signals collected during or close to tap events. Computation
of grasp stability and resistance features is discussed next.



SITOVÁ et al.: HMOG: NEW BEHAVIORAL BIOMETRIC FEATURES 879

TABLE I

NOTATION

Fig. 1. Illustration of key variables for computing grasp resistance
features 3-5 and grasp stability features 1-3.

A. Grasp Resistance Features

Grasp resistance features measure the resistance of a hand
grasp to the forces (or pressures) exerted by touch/gesture
events. We quantify resistance as the change, or perturbation,
in movement (using readings from accelerometer), orientation
(from gyroscope) and magnetic field (from magnetometer),
caused by a tap event.

We extracted five grasp resistance features from
accelerometer, gyroscope, and magnetometer, over four
dimensions (magnitude, x , y, and z axes), leading to
5 × 3 × 4 = 60 features. For simplicity of exposition, we
describe grasp resistance features only on the z axis. We also
extracted the same features from X , Y , and M . Our notation
is summarized in Table I. Figure 1 illustrates variables used
in features 3 through 5.

1) Mean of Z during taps.
2) Standard deviation of Z during taps.
3) Difference in Z readings before and after a tap event.

Let avg100msBefore be the average of Z read-
ings in a 100 ms window before tap start time, and
avg100msAfter be the average of Z readings in a
100 ms window after tap end time. We calculated this

Algorithm 1: Computation of tmin on Z Readings
input : avg100msBefore, t1, . . . , tn (timestamps between tend and

tend + 200 ms, and Z1, . . . , Zn (Z readings at t1, . . . , tn )
output: tmin (timestamp between tend and tend + 200 ms at which the

sensor reading are closest to those measured before the tap.)
1: for i = 1 . . . n do

2: avgDiffs[i] =
∑n

j=i (|Z j−avg100msBefore|)
n−i+1

3: end for
4: min = argmini (avgDiffs[i]) //min is the index at
which avgDiffs has its minimum value

5: return tmin

feature as the difference between avg100msAfter
and avg100msBefore.

4) Net change in Z readings caused by a tap. Let avgTap
be the average of Z readings during a tap event. We cal-
culate this feature as avgTap - avg100msBefore.

5) Maximum change in Z readings caused by a tap.
Let maxTap be the maximum Z reading during a
tap event. This feature is calculated as maxTap -
avg100msBefore.

B. Grasp Stability Features

Stability features quantify how quickly the perturbations
caused by a finger-force from a tap event disappear after the
tap event is complete. We compute grasp stability features as
follows: (Figure 1 illustrates variables used in the features.)

1) Time duration to achieve movement and orientation
stability after a tap event. Let tend denote the end time of
the tap event, and tmin the time when stability is achieved
after the tap event has ended, computed as shown in
Algorithm 1. This feature is calculated as tmin − tend .

2) Normalized time duration for mean sensor value to
change from before tap to after tap event, calculated as:

�duration = tafter_center−tbefore_center
avg100msAfter−avg100msBefore

where tafter_center is the center of the 100ms window after
a tap event, and tbefore_center is the center of the 100ms
window before the tap event.

3) Normalized time duration for mean sensor values to
change from maxTap to avg100msAfter in response
to a tap event, calculated as:

�max_to_avg = ta f ter_center−tmax_in_tap
avg100msAfter−maxTap

where maxTap is the maximum sensor value during a
tap, and tmax_in_tap is the time when this value occurred.

We extracted the above three grasp stability features for three
sensors and four types of sensor readings (X , Y , Z and M),
for a total of 3× 3× 4 = 36 features.

Complexity of computing HMOG features is linear (O(n))
in the sampling frequency, except for Grasp Stability Feature 1,
which is quadratic (O(n2)).

III. DATASET

To evaluate HMOG features, we used sensor data collected
from 100 smartphone users (53 male, 47 female) during eight
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Fig. 2. Flow-diagram depicting our experiment workflow.

free text typing sessions [19].2 Users answered three questions
per session, typing at least 250 characters for each answer.
In four sessions, the users typed while sitting. In another
four sessions, users typed while walking in a controlled
environment.

For each user, we collected an average of 1193 taps
per session (standard deviation: 303) and 1019 key presses
(standard deviation: 258). The average duration of a session
was 11.6 minutes, with a standard deviation of 4.6 minutes.
Data was collected using the same smartphone model
(Samsung Galaxy S4). We used a total of ten Samsung
Galaxy S4. Data was collected over multiple days, and the
same user might have received a different device during each
visit.

We recorded accelerometer, gyroscope and magnetometer
sensor readings (sampling rate 100 Hz) as well as raw touch
data collected from the touchscreen, touch gestures (e.g., tap,
scale, scroll, and fling), key press, and key release latencies
on the virtual keyboard. Due to security concerns, Android
OS forbids third-party applications to access touch and key
press data generated on the virtual keyboard. Therefore, we
designed a virtual keyboard for data collection that mimicked
the look, feel, and functionality of default Android keyboard,
including the autocorrect and autocomplete options, which the
users were free to use.

During data collection users were allowed to choose the
orientation of the smartphone (i.e., landscape or portrait).
Because less than 20 users typed in landscape orientation, we
performed all authentication experiments with data collected
in portrait mode.

IV. EVALUATION OF HMOG FEATURES

Our experiment workflow involves: (1) computing features
from data collected during typing; (2) performing feature
selection; (3) performing feature transformation (PCA);
(4) performing outlier removal; and (5) performing authentica-
tion using Scaled Manhattan, Scaled Euclidean, SVM verifiers,
and score-level fusion. Figure 2 summarizes the experiment
workflow.

2Our dataset is available at http://www.cs.wm.edu/∼qyang/hmog.html

A. Design of Authentication Experiments

1) 1-Class Verifiers: We performed verification experiments
using three verifiers [20]: scaled Manhattan (SM), scaled
Euclidian (SE), and 1-class SVM. (Henceforth, we use “SVM”
to refer to “1-class SVM”.) We chose these verifiers because
previous work on behavioral authentication has shown that
they perform well. For instance, SM and SVM were top
performers in a study on keystroke authentication of desktop
users by Killourhy and Maxion [20]. SVM performed well
in experiments on touch-based authentication of smartphone
users by Serwadda et al. [21]. SE is a popular verifier in
biometrics (see for example [22], [23]).

Parameter tuning was not required for SM and SE. However,
for SVM [24], we used RBF kernel and performed a grid
search to find the parameters (for γ , we searched through
2−13, 2−11, 2−9, . . . , 213; and for ν, we searched through 0.01,
0.03, 0.05, 0.1, 0.15 and 0.5). We used cross-validation to
choose the parameter values (see Section IV-C).

We did not include 2-class verifiers in our evaluation.
To train a 2-class verifier, in addition to data from smart-
phone owner, biometric data from other users (non-owners) is
required. Because sharing of biometric information between
smartphone users leads to privacy concerns, we believe that
1-class verifiers are more suitable for smartphone authentica-
tion. (A similar argument was made in [25].)

2) Training and Testing: For experiments in sitting and
walking conditions, we used the first two sessions for training
and the remaining two for testing. We extracted HMOG
features during each tap. Thus, each training/testing vector
corresponded to one tap. With keystroke dynamics features,
each training/testing vector corresponded to one key press on
the virtual keyboard.

For SM and SE, the template consisted of the feature-wise
average of all training vectors. We used user-wise standard
deviations for each feature for scaling. We used all training
vectors to construct the template (hypersphere) with SVM.
Users with less than 80 training vectors were discarded from
authentication. As a consequence, ten users failed to enroll
(and were not included in our experiments).

We created authentication vectors by averaging test vectors
sampled during t-seconds scan. We report results for authenti-
cation scans of t = 20, 40, 60, 80, 100, 120 and 140 seconds.
We chose these scan lengths to cover both low and higher
authentication latencies. Our preliminary experiments showed
that for scans longer than 140 seconds, there is minimal
improvement in authentication performance.

3) Quantifying Authentication Performance: We generated
two types of scores, genuine (authentication vector was
matched against template of the same user) and zero-effort
impostor (authentication vector of one user was matched
against the template of another). We used population equal
error rate (EER) to measure the authentication performance.

B. Comparing HMOG to Other Feature Sets

We compared the authentication performance of HMOG
features with touchscreen tap and keystroke dynamic features
(key hold and digraph latencies).
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TABLE II

PARAMETERS EVALUATED USING CROSS-VALIDATION

1) Touchscreen Features From Tap Events: We extracted 11
commonly used touchscreen-based features for tap events
(see Table VIII). Some papers (e.g., [6], [21]) defined these
features for swipes, while we extracted them from taps due to
very low availability of swipes during typing, and to provide
a more meaningful comparison with HMOG features, which
are collected during taps. The features we extracted are:
• Duration of the tap
• Contact size features: mean, median, standard deviation,

1st, 2nd and 3rd quartile, first contact size of a tap,
minimum and maximum of the contact size during the
tap (9 features)

• Velocity (in pixels per second) between two consecutive
press events belonging to two consecutive taps.

2) Key Hold Features: Key hold latency is the down-up
time between press and release of a key. We used 89 key hold
features, each corresponding to a key on the virtual keyboard.

3) Digraph Features: Digraph latency is the down-down
time between two consecutive key presses. We used digraph
features for combinations of the 35 most common keys in our
dataset.3 Thus we have 352 = 1225 digraph features.

4) Score-Level Fusion: To determine whether HMOG
features complement existing feature sets, we combined tap,
key hold, digraph and HMOG features using weighted sum
score-level fusion. We chose this method because it is simple
to implement, and has been shown to perform well in bio-
metrics [26]. We used the technique of Locklear et al. [27] to
ensure that weights sum to one and proportion of weights is
preserved when scores from some feature sets were missing
(e.g. due to lack of accelerometer data). We used grid-search
to find the weights which led to the best authentication
performance.

C. Feature Selection, Preprocessing, and Transformation

To improve authentication performance, we performed
feature selection, feature transformation with Principal
Component Analysis (PCA), and outlier removal.

1) Parameter Selection: We used 10-fold cross-validation
(10-CV) on training data to choose feature selection method
(mRMR or Fisher score ranking), as well as to set the
parameters for feature selection, PCA, and SVM. The para-
meters are presented in Table II. We evaluated all parameters
independently for each combination of feature set, verifier,
authentication scan-length and body-motion condition.

3All 26 alphabetic keys, 5 keyboard switches (shift, switch between numer-
ical and alphabetical keyboard, delete, done, return) and 4 special characters
(space, dot, comma and apostrophe). The availability of other keys in our
training data was extremely low (<1 on average per user).

For each set of parameter values, 10-CV yielded ten EERs,
which we averaged to get an estimate of the EER corre-
sponding to that set of parameter values. We then selected
parameter values which had the lowest (average) EER. For
10-CV experiments involving 20- to 140-second scan lengths,
the sets of parameter values that led to the lowest EERs were
not always identical. In this case, we took a majority vote to
select the most common parameter values.

2) Feature Selection: During training, we evaluated two
feature selection methods: Fisher score ranking [28], and
minimum-Redundancy Maximum-Relevance (mRMR) [29].
Our preliminary experiments showed that Fisher score per-
formed better for HMOG features, while mRMR performed
well with tap features. With key hold and digraph features,
the best performing feature set contained all the features.

Fisher score ranking was computed independently for each
HMOG feature as the ratio of between-user to within-user
variance. (Higher Fisher score suggests higher discriminabil-
ity of the corresponding feature.) Using 10-CV, we tested
feature subsets whose sum of Fisher scores accounted for
80% to 100% of the sum of Fisher scores of all features.

We selected HMOG features for each verifier separately.
The following parameters for Fisher score ranking provided
the best authentication results: 82% (17 features) for SM dur-
ing sitting; 81% (13 features) for SM and SVM during
walking; and 80% (16 features) for SVM during sitting. For
SE, we achieved lowest EER by including resistance features
only, compared to the feature subset obtained from feature
selection. Figure 3 reports the ranking of the features during
sitting (3(a)) and walking (3(b)).

For tap features, with SM verifier we achieved the best
results with 3 features chosen by mRMR (threshold 0) and
for SE and SVM with 2 features (threshold 0.1). The best
three features according to mRMR are (in this order): duration
of the tap; mean of contact size; and velocity between two
consecutive down events.

3) Outlier Removal: For HMOG and tap templates, we eval-
uated the interquartile outlier removal (i.e., different subsets
of the values from the first and fourth quartile are removed).
Experiments with SM verifier showed that outlier removal
does not improve authentication accuracy, so we did not
consider it further in our experiments.

For key hold and digraph latencies, using only outlier
removal and not performing feature selection or transformation
led to the best results. Outlier removal was done using two
parameters: (1) latencies longer than l ms were discarded and
(2) if a feature occurs less than m times in a user’s template,
the feature was discarded). The values evaluated for l were
100, 200, 300, 400, 500 and 1000 for key hold and 200, 350,
500, 650 and 800 for digraph. For m, we experimented with
2, 5, 10, 15, 20, 40 and 60. The best l value was 200 for key
hold, and between 350–500 for digraph; the best m value was
between 2–60 for key hold and between 2–5 for digraph.

4) Feature Transformation: We used PCA to transform
original features into principal components, that were subse-
quently used in authentication experiments. Our motivation
for using PCA are: (1) to remove correlation between features
to meet the assumptions in SE and SM, and (2) to reduce
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Fig. 3. HMOG features extracted from accelerometer and gyroscope, sorted
by Fisher score computed from training data. Higher scores correspond to
features with higher discriminative power. Magnetometer features (not shown)
ranked below accelerometer and gyroscope features. (a) Fisher scores of
HMOG features during sitting. (b) Fisher scores of HMOG features during
walking.

dimensionality by using only those principal components,
which explain most of the variance. We performed PCA under
two settings: (1) on all features (except magnetometer features,
which performed poorly), and (2) on a subset of features
selected using Fisher score and mRMR. We performed 10-CV
experiments with components explaining 90%, 95%, 98%, and
100% of total variance, to set the threshold for dimensionality
reduction. PCA improved EER for HMOG features with SE
when performed on resistance features, and for SVM during
sitting when performed on features selected using Fisher score.
PCA performed on all tap features improved results with
SM and SE.

V. AUTHENTICATION RESULTS

In this section, we report authentication performance of
HMOG features. We compare the performance of HMOG with
keystroke and tap features and report results with fusion.4

Finally, we present our findings on why HMOG features
achieve lower EERs during walking.

4See Supplement for the number of genuine and impostor scores used for
calculating EERs in this paper.

Fig. 4. Comparison of HMOG features in sitting and walking conditions for
three verifiers. The reported EERs are with PCA for SE, and for SVM-sitting;
and without PCA for SM and SVM-walking. X-axis shows authentication time
in seconds.

Fig. 5. Comparison of EERs of HMOG with keystroke dynamics
(i.e., key hold and digraph) and tap features with SM verifier. X-axis shows
authentication time in seconds.

A. Performance of HMOG Features

HMOG features extracted from both accelerometer and
gyroscope outperformed those extracted from individual sen-
sors. HMOG features from magnetometer performed consis-
tently worse than accelerometer and gyroscope features with
all verifiers, in both sitting and walking conditions. Combining
magnetometer features with features from accelerometer and
gyroscope did not improve performance.

Resistance features outperformed stability features in both
walking and sitting conditions (and also had higher Fisher
score, see Figure 3). This suggests that the ability of resistance
features to discriminate between users is higher than that
of stability features. In fact, feature selection on HMOG
with 10-CV resulted in selecting resistance features only.
In some cases, using PCA after feature selection further
lowered EERs. Table III summarizes the sensors and feature
selection/transformation that led to the lowest EERs.

In Figure 4, we show the EERs of all verifiers under
sitting and walking conditions, when the authentication scans
varied between 20 and 140 seconds. Among the three verifiers,
SM overall had lower EERs for both sitting and walking
conditions and therefore we present the results only with
SM hereafter.

1) Comparison of HMOG With Keystroke Dynamics and
Tap Features: Tap features and HMOG features in walking
condition performed better than keystroke dynamics features;
HMOG in sitting outperforms keystroke dynamics for shorter
scans and is comparable for longer scans (see Figure 5).

HMOG features outperformed tap features in walking
condition, while tap outperformed HMOG in sitting.
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TABLE III

SUMMARY OF LOWEST EERs ACHIEVED USING ONLY HMOG FEATURES

Fig. 6. Score-level fusion of combinations of feature types with SM verifier.
X axes show authentication time in seconds. (a) Sitting. (b) Walking.

TABLE IV

SUMMARY OF LOWEST EERS ACHIEVED WITH SCORE-LEVEL FUSION OF
HMOG,TAP, AND KEYSTROKE DYNAMICS (KD) FEATURES

The performance of tap and keystroke dynamics features
did not change significantly between sitting and walking.
However, the performance of HMOG improved considerably
(up to 6.11%) during walking.

2) Fusion of HMOG, Tap, and Keystroke Features: We used
SM verifier and performed score-level fusion with the follow-
ing feature combinations: {HMOG, tap, keystroke dynamics};
{tap, keystroke dynamics}; and {tap, HMOG}. Detailed fusion
results for sitting and walking conditions are presented in
figures 6(a) and 6(b), respectively. The lowest EERs achieved
with fusion are summarized in Table IV,v and the correspond-
ing DET curves for fusion on 60- and 120-second scan lengths
are shown in Figure 7.

Our results show that: (1) for both walking and sitting con-
ditions, score-level fusion of all signals led to the lowest EER;

and (2) fusing HMOG with tap features led to a decrease in
EERs and either outperformed (in the case of walking and
shorter scans in sitting) or was comparable (in the case of
longer scans in sitting) to fusion of tap and keystroke dynamics
(see figures 6(a)) and 6(b)). Both (1) and (2) indicate that
HMOG provides additional distinctiveness to that of tap and
keystroke dynamics, especially in walking condition.

B. Why HMOG Features Perform Better During Walking

We investigated why HMOG features performed better
during walking. Specifically, we investigated whether the high
authentication accuracies of HMOG features during walking
were due to hand movements caused by taps, or due to
movements caused by walking, or a combination of both.

1) Experiment Setup: We extracted 64 HMOG features
from two segments of an accelerometer/gyroscope signal:
(1) during tap, as discussed in previous sections; and
(2) between taps, in which HMOG features were extracted
when the user was not tapping the screen (see Figure 8). In (2),
the signal between taps was segmented into non-overlapping
blocks of 91 ms; one HMOG feature vector was extracted
from each block. We selected 91ms as the block size because
it was the median duration of a tap in our training data. This
ensured that the number of sensor readings used to extract a
HMOG feature vector between and during tap remained same.

HMOG features extracted during taps use sensor read-
ings from 100 ms before and 200 ms after a tap event
(see Section II). We extracted HMOG features between taps
starting 300 ms after a tap until 300 ms before the next tap,
to avoid any overlap between during and between HMOG
features.

The average number of the training vectors per user for
HMOG during taps was 1122 for sitting, and 1186 for walking.
For between taps, it was 7692 for sitting and 7462 for walking.
The average number of testing vectors per user for HMOG
features during taps was 897 for sitting and 972 for walking.
For between taps, it was 5885 for sitting and 5768 for walking.
Verification experiments were performed using SM.

2) Performance of HMOG Features Extracted During vs.
Between Taps: We compared HMOG features extracted during
taps with the same features extracted between taps for sitting
and walking conditions. For sitting, HMOG features extracted
during taps performed consistently better than those extracted
between taps (see EERs in Figure 9). This indicates that
HMOG features were able to capture distinctive hand micro-
movement patterns when the users tapped on the phone.
Similarly, for walking, HMOG features extracted during taps
performed better than those extracted between taps (see EERs
in Figure 9). This again indicates that HMOG features capture
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Fig. 7. DET curves for fusion of all feature types including and excluding HMOG. The scan lengths are 60- and 120-seconds. (a) Sitting (60-second scans).
(b) Walking (60-second scans). (c) Sitting (120-second scans). (d) Walking (120-second scans).

Fig. 8. HMOG features extracted during and between taps. The figure shows a sample of readings from the z-axis of accelerometer in sitting condition.

user’s distinctive hand micro-movement patterns when the user
is tapping, regardless of the motion condition.

3) Impact of Walking on HMOG Features Extracted
Between Taps: HMOG features extracted between taps during
walking outperformed the same when extracted during sitting
(see between tap EERs for sitting and walking in Figure 9).
This indicates that HMOG features capture distinctive move-
ments induced by walking, even in the absence of tap activity.

Supported by the above results, the high authentication
accuracies achieved by HMOG features during walking can be
jointly attributed to: (a) the distinctiveness in hand movements

caused by tap activity and (b) the distinctiveness in movements
caused by walking.

VI. BIOMETRIC KEY GENERATION

FROM HMOG FEATURES

In this section, we evaluate the performance of HMOG
features for biometric key generation (BKG). For this
purpose, we introduce our BKG construction, which
extends and generalizes the fuzzy commitment scheme of
Juels and Wattenberg [30]. While the technique in [30] oper-
ates on features represented using a single bit, our BKG
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TABLE V

LIST OF SYMBOLS USED IN THIS SECTION

Fig. 9. Performance of HMOG features extracted during and between taps.
X-axis shows authentication time in seconds.

construction represents features as symbols of an alphabet of
arbitrary prime size p. Our BKG relies on Reed-Solomon error
correcting codes [31] in Lee metric [32]. Notation used in this
section is presented in Table V.

Preliminaries: BKG uses biometric information to prevent
unauthorized access to cryptographic keys; these keys can then
be used, e.g., to encrypt/decrypt sensitive information. The
process of protecting a key is referred to as committing, and
the outcome of this process is a commitment. Given a commit-
ment, the cryptographic key is reconstructed by decommiting
(or opening) it, using information from a biometric signal.
Informally, a BKG construction is secure if a key committed
using a biometric signal s can be opened only using a signal
s′ ≈ s, and both s and s′ are from the same user.

BKG techniques use error-correcting codes to address nat-
ural variations among different biometric samples from the
same users. An error-correcting code is defined as a set C of
codewords. Typically, there are two functions associated with a
code: encode(·) and decode(·). The former maps a message
to a codeword; the latter—a possibly perturbed codeword to
the original codeword. The decode(·) function is designed to
maximize the probability of correct decoding.

A. Our Construction

1) Scaling and Discretization: BKG techniques work
on discrete values, instead of real values. Therefore, the
user first performs scaling and discretization of the fea-
ture vector representing her biometric. Each feature Fi

is assigned a discretization range [0, d_rangeFi
], where

d_rangeFi
∈ {(p − 1)/2, . . . , p − 1} is negatively correlated

to the standard deviation σi of Fi (i.e., if σi < σ j , then
d_rangeFi

> d_rangeFj
).

Let xi be an instance of Fi , and minFi and maxFi be
respectively the typical minimum and maximum value of Fi .

Discretization and scaling are performed as:

DSFi (xi)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 xi < minFi⌊
d_rangeFi

·
(

xi−minFi
maxFi−minFi

)⌋
minFi ≤ xi ≤ maxFi

d_rangeFi
xi > maxFi

2) Committing a Key: To commit a cryptographic key
using n biometric features, the user selects a random code-
word c of length n from C ⊂ (Zp)

n . The key is computed
as k = PRFc(z|0), where PRF is a pseudorandom function
family, z is a system-wide public constant and “|” denotes
string concatenation. (BKG can be augmented with a second
authentication factor by setting z to a user-provided password.)
c is then committed using the user’s biometrics as discussed
next. Let x = (x1, . . . , xn) be a scaled and discretized feature
vector. The user computes δ = (x−c) = (x1−c1, . . . , xn−cn)
and publishes commitment γ = (PRFc(z|1), δ).

The user computes k from γ and her biometric signals (and
possibly a password z) as follows. She extracts biometric fea-
tures from the signal, and encodes them as y = (y1, . . . , yn).
Then, she computes c′ = decode(y − δ). If PRFc′(z|1) =
PRFc(z|1), then k = PRFc′(z|0) with overwhelming
probability.

Asymptotic complexity of BKG key retrieval is dominated
by one instance of Euclidean algorithm and one matrix-vector
multiplication, both in O(n2) finite field operations in a field
of size p ≥ n. Security of our construction is analyzed
in Appendix A.

3) Using Lee-Metric Decoding for BKG: Distance between
feature vectors is defined using the Lee distance [32]—a
discrete approximation of SM:

Definition 1 (Lee Weight): Let p be an odd prime. The
Lee weight of element x ∈ Zp is defined as wL(x) = min |x ′|,
for x ′ ≡ x mod p. The Lee weight of vector
x = (x1, . . . , xn) ∈ (Zp)

n is defined as the sum of
Lee weights of its elements, i.e., wL(x) =∑n

i=1 wL(xi ).
Definition 2 (Lee Distance): The Lee distance of vectors

x, y ∈ Zp is the Lee weight of their difference, i.e.,
dL(x, y) = wL(x − y).
In Z2, the Lee weight coincides with Hamming weight.

We used normalized generalized Reed-Solomon codes
from [31], presented next, to implement the encode(·) and
decode(·) functions.

Definition 3: Let l ≤ n and n ≤ p. A linear [n, l]-code over
Zp is a l-dimensional vector subspace of (Zp)

n. A normalized
Reed-Solomon [n, l]-code over Zp is a linear [n, l]-code over
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Fig. 10. EERs for BKG during sitting and walking. X-axis shows the
authentication time in seconds. (a) EER for Sitting. (b) EER for Walking.

Zp with parity-check matrix:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
1 2 . . . n
1 22 . . . n2

...

1 2n−l−1 . . . nn−l−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and generator matrix:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1 v2 . . . vn

v1 2v2 . . . nvn

v1 22v2 . . . n2vn
...

v1 2l−1v2 . . . nl−1vn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The rows of G form a basis of the nullspace of H T .
To obtain a random codeword from C , we select a l-tuple

m = (m1, . . . , ml) ∈ (Zp)
l uniformly at random, and encode

m as c = mG. The Lee distance of C is 2(n − l), so for any
error e = (e1, . . . , en) with wL(e) < n−l, decode(c+e) = c.

B. Evaluation of HMOG Features on BKG

To evaluate HMOG features for BKG, we determined
their authentication accuracy and security against population
attacks. We then compared our results with HMOG features
to that of tap, key hold, and swipe features under the same
metrics.

1) Biometric Accuracy: Figures 10(a) and 10(b) summarize
the results of our experiments, performed on our 100-user
dataset. We evaluated BKG using the features that performed

best for authentication. We used 17 and 13 HMOG features
in sitting and walking conditions, respectively (see Figure 3).

We ran experiments on four different feature sub-
sets: (1) HMOG-only features; (2) 11 tap-only features;
(3) 12 (sitting) and 8 (walking) key hold-only features; and
(4) HMOG and 3 best-performing tap features. For both
walking and sitting experiments, feature subset (4) provided
the best results, i.e., 15% and 20% EER respectively, for
both one-minute and two-minute scan lengths. For sitting
experiment, key generation was not possible with (3), as the
within-user variability of the biometrics signals was too high.

Šeděnka et al. [33] showed that Linear Discriminant
Analysis (LDA) [34] improves BKG accuracy on desktop
keystroke dynamics. However, HMOG, tap, and key hold
features on a virtual keyboard did not benefit from LDA.
Therefore we do not report BKG results with LDA for these
features.

2) Security Against Population Attacks: EER computed via
zero-effort attacks provides limited information on the security
of a BKG scheme, because it does not take into account all
the information readily available to the adversary. In particular,
with BKG the adversary has access to: (1) the commitment γ ;
and (2) an approximation of the distribution of the user’s
biometric signals obtained from population data.

Access to γ allows the adversary to test whether a particular
feature vector decommits the key. The adversary can perform
this test offline, i.e., with no restrictions on the number
of attempts performed (within the limits of the available
resources). Therefore, the hardness of “guessing” a user’s
feature vector given γ is an upper bound on the security of a
BKG scheme.

The adversary can use (2) to guess the user’s feature vector
more efficiently, under the assumption that biometric signals
from different users are not completely independent. To this
end, Ballard et al. [35] proposed the notion of guessing
distance. It is defined as the logarithm of the number of
guesses necessary to open a commitment using feature vectors
from multiple impostors.

We instantiated guessing distance in our setting as follows.
First, we built a commitment γi = (PRFci (z|1), δi ) from the
feature vector of each user i . Then, we used the biometric
sample from user j to open all γi such that i 
= j , and ranked
users according to how many commitments they were able to
open. Finally, for each user i we select users j 
= i following to
this ranking, and determined how many attempts were required
to open γi . Guessing distance was computed as the binary
logarithm of this value. There might be users i for which no
feature vector from other users could open γi . We refer to the
commitments of these users as non-guessed.

Table VI summarizes the results of our experiments for one
minute scans. The lowest EER was achieved by combining
HMOG features with the tap features selected by mRMR.
Overall, HMOG outperformed tap features for biometric key
generation. Nevertheless, our results show that most commit-
ments can be guessed using population data.

3) Comparison of HMOG and Swipe Features: Because
there is no previous work on BKG using touch-,
accelerometer-, or gyroscope-based features, we compared
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TABLE VI

SECURITY OF BKG BASED ON HMOG, TAP, KEY HOLD, AND SWIPE FEATURES

BKG on HMOG with BKG on touch features extracted from
swipes (swipe features hereafter). For this purpose, we com-
puted swipe features from the datasets of Serwadda et al. [21].
As in [21], we used the whole first session for computing
commitments and ten swipes from the second session to
perform impostor/genuine open attempts. Results are reported
in Table VI.

We also performed experiments on the touch dataset of
Frank et al. [6]. However, a large majority of the users could
not reliably decommit their own keys. This was due to the large
variance between the vectors used to build the commitment,
and the one used to open it. Therefore, we did not include
these results in this paper.

VII. ENERGY CONSUMPTION OF HMOG FEATURES

We measured the energy consumption of two basic
modules involved in extracting HMOG features: (1) sensors
(i.e., accelerometer and gyroscope); and (2) feature compu-
tation (i.e., calculation of a HMOG feature from raw sensor
readings). Our main finding from energy consumption analysis
is that decreasing sensor sampling rate (from 100Hz to as low
as 16Hz) considerably reduced the energy overhead without
impacting the authentication performance of HMOG features.

A. Experiment Setup and Design

We developed an Android application that collects and
processes sensor data at different sampling rates. Our appli-
cation allows us to selectively enable sensors and HMOG
features. We extracted the best-performing 17 features for
sitting (i.e., top-ranked 17 features in Figure 3(a) that were
selected by 10-CV) and 13 HMOG features for walking (i.e.,
top-ranked 13 features in Figure 3(b), selected by 10-CV).
The union of these two feature sets resulted in 18 HMOG
features. Because none of these feature were extracted from
magnetometer, we did not measure its energy consumption.

Experiments were performed using a Samsung Galaxy S4
smartphone running Android 4.4. To obtain consistent and
repeatable results, we terminated all other applications and all
Google services on the smartphone. Additionally, we switched
off WiFi, Bluetooth, and cellular radios. The screen was turned
on during the experiments. Automatic brightness adjustments
were disabled, and brightness was set to the lowest level.
We used the Monsoon Power Monitor [36] to measure the
phone’s energy consumption.

Fig. 11. Performance of HMOG features with different sensor sampling rates
using SM verifier.

We performed the energy consumption experiments as
follows. First, we measured baseline energy consumption by
running our application with all sensors and features disabled.
Then, we enabled accelerometer and gyroscope, and evaluated
the corresponding energy consumption. Our application is
designed to sample sensors at all supported frequencies. In the
case of Galaxy S4, the available sampling rates are: 5Hz,
16Hz, 50Hz, and 100Hz. We used authentication scan lengths
of 60 and 120 seconds. Our results report the average and
standard deviation of ten experiments in each setting. Finally,
we quantified the energy overhead of computing 18 HMOG
features from sensor readings acquired during data collection.

Calculation of EERs at Lower Sampling Rates: We
originally collected our data at 100Hz sampling rate. In order
to obtain the EERs for lower sampling rates, we used down-
sampling. For example, to simulate 16Hz sampling rate,
we choose every sixth sensor reading from the original
sensor data. Then, using the downsampled data, we per-
formed HMOG-based authentication with SM verifier for
60- and 120-second scans using the same evaluation process
as in Section IV.

B. Energy Consumption of HMOG Authentication

1) EERs vs. Energy Consumption: Figure 11 shows that
EERs for 16Hz sampling rate are comparable to those of
50Hz and 100Hz for both sitting and walking, while the EERs
for 5Hz are considerably worse than 16Hz, 50Hz, and 100Hz.

On the other hand, Table VII shows that energy overhead
over the baseline is low (between 6.2% and 7.9%) for 5Hz
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TABLE VII

ENERGY CONSUMPTION MEASUREMENT RESULTS

and 16Hz sampling rates and, in comparison, high (between
12.8% and 20.5%) for 50Hz and 100Hz.

Thus, during the active authentication with HMOG, we can
choose 16Hz instead of 100Hz as the sensor sampling rate,
which would lower the energy overhead of sensor data
collection by about 60% without sacrificing EER.

2) Energy Consumption for Feature Computation: The
energy overhead for computing 18 features is very low
compared to energy overhead of sensor data collection. The
energy consumption for computing all 18 HMOG features is
0.08 joules, which corresponds to 0.19% overhead for the
60-second and 0.1% for 120-second scans. This low over-
head can be attributed to the fact that HMOG features
are time-domain features. (As suggested by previous
research [37], [38], computing time-domain features consumes
less energy than computing frequency-domain features.) Fur-
ther, because HMOG feature computation involves simple
arithmetic calculations, they can be processed very quickly
by the smartphone’s CPU (on average 37ms per feature,
in our case).

VIII. RELATED WORK

A. Evolution of Continuous Authentication in
Desktops and Mobile Phones

The need to periodically authenticate the user after login,
combined with the fact that behavioral biometric traits can
be collected without interrupting the user, led to promis-
ing research in the area of continuous authentication. Early
work in the field used keystroke dynamics [44]–[47] to
authenticate desktop users. Later studies on desktop users
demonstrated the feasibility of using a variety of behavioral
traits, including mouse dynamics [25], soft-biometrics [48],
hand movement [49], keyboard acoustics [50], screen finger-
prints [51], language use [52], [53] and cognition during text
production [27], [54]–[56].

Early studies in continuous authentication of mobile phone
users focused on keystroke dynamics (see [57]–[61]), because
these devices had a hardware keyboard to interface with the
user. However, as mobile phones evolved into “smartphones”,
research in this area has been reshaped to leverage the multi-
tude of available sensors on these devices (e.g., touchscreen,
accelerometer, gyroscope, magnetometer, camera, and GPS).
Two behavioral traits have been predominantly explored in
the smartphone domain, (1) gait (see, e.g., [6], [21]), and (2)
touchscreen interaction (see, e.g., [7], [62]). More recently,

research has focused on leveraging multi-modal behaviors
(e.g., [8], [63]).

B. Continuous Authentication Using Taps

Because HMOG features are collected during taps,
we review existing work that uses tap activity to authenticate
smartphone users. In Table VIII, we summarize the state-
of-the-art in tap-based authentication, and highlight various
aspects of each work, such as: (1) how the taps were
collected—did the user compose free-text or type predefined
fixed-text; (2) which body motion conditions (e.g., sitting and
walking) were considered; (3) number of subjects (partitioned
into owners and impostors, wherever appropriate); (4) how
the verifier was trained; (5) how the authentication vector was
created; and (6) the features used (e.g., motion-sensor, tap, or
keystroke-based).

Among previous papers [8], [41], [43], which have used
motion sensors for user authentication, Zheng et al. [41] used
fixed pins while Gascon et al. [43] used fixed phrases. The
only work that used free-text typing and also the only one
to authenticate users under walking condition is the paper
by Bo et al. [8]. Therefore, we believe that this is closest
work to our paper, and highlight the differences between our
paper and [8] as follows: (1) we performed experiments on a
large-scale dataset containing 100 users (90 users qualified as
genuine, and 93 or more as impostors), while [8] used only
10 genuine users and 50 impostors (on average) from a dataset
of 100 subjects. Because the genuine population size in [8] is
too small, it is difficult to assess how accurately the reported
FARs/FRRs represent the achievable authentication error rates
with movement-based features, given that the number of users
is a critical factor in assessing the confidence on empirical
error rates of biometric systems [64]; (2) we introduced and
evaluated a wide range of movement features, while [8] used
only two (i.e., mean magnitude of acceleration and mean
magnitude of angular velocity, during a gesture). Our results
clearly reveal that certain types of movement features (e.g.,
resistance) perform better than others (e.g., stability), while [8]
does not distinguish between different types of movement
features; (3) our evaluation is comprehensive and includes
detailed comparison and fusion with additional features such
as touchscreen tap and keystroke. This allowed us to report
how fusion with different types of features impacted authenti-
cation and BKG performance. In contrast, [8] do not compare
different types of features; and (4) HMOG features performed
well in both sitting and walking condition, while [8] had
resorted to gait features for authentication during walking.

C. Biometric Key Generation

To our knowledge, there is no previous work on BKG on
smartphones. Here, we review some important work related to
BKG in general.

Introduced by Juels and Wattenberg [30], BKG imple-
mented via fuzzy commitments uses error correcting codes
to construct cryptographic keys from noisy information. Fea-
tures are extracted from raw signals (e.g., minutiae from
fingerprint images); then, each feature is encoded using a
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TABLE VIII

COMPARISON OF OUR AUTHENTICATION EXPERIMENTS WITH RELATED WORK ON SMARTPHONE TAP/TYPING AUTHENTICATION

single bit. Cryptographic keys are committed using features;
subsequently, commitments are opened using biometric signals
from the same users. Error-correcting techniques are applied to
noisy biometric information in order to cope with within-user
variance.

Ballard et al. [35] provided a formal framework for ana-
lyzing the security of a BKG scheme, and argued that BKG
should enjoy biometric privacy (i.e., biometric signals cannot
be reconstructed from biometric keys) and key randomness
(i.e., keys look random given their commitment). They also
formalized adversarial knowledge of the biometric by intro-
ducing guessing distance—the logarithm of the number of
guesses necessary to open a commitment using feature vectors
from multiple impostors.

D. Energy Consumption Analysis

Bo et al. [8] showed that energy consumption can be
reduced by selectively turning off motion sensors based on two
factors: (1) the sensitivity of the app being used—non-sensitive
applications, such as games, require no authentication; and
(2) the probability that the smartphone is handed to another
user. This probability is calculated using historical smartphone
usage data. In their experiments, Bo et al. were able to turn off
the sensors 30-90% of the time, while maintaining reasonable
authentication performance. However, they did not report how
they performed energy consumption measurements, nor listed
the energy consumptions associated with determining if the
phone was being held by its owner or handed to another user.

Feng et al. [65] introduced TIPS—a continuous user authen-
tication technique that relies on touch features exclusively.
By collecting energy usage data, the authors reported average
energy consumption of 88 mW, which corresponds to less than
6.2% overhead. Like [8], Feng et al. [65] also do not describe
how energy measurements were performed.

Khan et al. presented Itus [66], a framework that helps
Android application developers to deploy various continu-
ous authentication mechanisms. Energy evaluation was per-
formed using PowerTutor [67]—an Android application that
reports energy measurements performed by the smartphone.
Overall energy overhead of the tested continuous authentica-
tion techniques varied between 1.2% and 6.2%.

Compared to previous research, our work provides a
more complete picture of energy overhead of continuous

authentication using HMOG. In fact, we highlighted the trade-
offs of energy usage for different sensor sampling rates and
authentication scan lengths, versus authentication accuracy.
In comparison to our work, existing literature did not analyze
fine-grained energy consumption brought by individual com-
ponents such as motion sensors. To our knowledge, we are the
first to report the relationship between sensor sampling rates
and continuous authentication accuracy.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced HMOG, a set of behavioral
biometric features for continuous authentication of
smartphone users. We evaluated HMOG from three
perspectives—continuous authentication, BKG, and energy
consumption. Our evaluation was performed on multi-session
data collected from 100 subjects under two motion conditions
(i.e., sitting and walking). Results of our evaluation can
be summarized as follows. By combining HMOG with tap
features, we achieved 8.53% authentication EER during
walking and 11.41% during sitting, which is lower than the
EERs achieved individually with tap or HMOG features.
Further, by fusing HMOG, tap and keystroke dynamic
features, we achieved the lowest EERs (7.16% in walking
and 10.05% in sitting). Our results demonstrate that HMOG
is well suited for continuous authentication of smartphone
users. In fact, HMOG improves the performance of taps and
keystroke dynamic features, especially during walking—a
common smartphone usage scenario. For BKG, HMOG
features provide lower EER (17.4%) compared to tap
(25.7%) and swipe features (34.2%). Moreover, fusion of
HMOG with tap features provide the best performance, with
15.1% EER. Additionally, the energy overhead of sample
collection and feature extraction is small (less than 8% energy
overhead when sensors were sampled at 16Hz). This makes
HMOG well suited for energy-constrained devices such as
smartphones.

As future work, we plan to investigate how HMOG features
perform under stringent constraints such as: (a) walking at
higher speeds; (b) using the smartphone in different weather
conditions; and (c) using applications that do not involve
typing (e.g., browsing a map). Another research question of
interest is cross-device interoperability, i.e., how and to what
extent can a user’s behavioral biometric collected on a desktop
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(e.g., keystroke dynamics) be leveraged with HMOG features
to authenticate the user on a smartphone (and vice versa).

APPENDIX A
SECURITY ANALYSIS OF OUR BKG SCHEME

We prove that our BKG technique meets the requirements
from [35]—namely, that cryptographic keys are indistinguish-
able from random given the commitment (key randomness),
and that given a cryptographic key and a commitment, no
useful information about the biometric can be reconstructed
(biometric privacy). We assume that the biometric is modeled
by an unpredictable function. This captures the idea that a
user’s biometric is difficult to guess. Informally, an unpre-
dictable function f (·) is a function for which no efficient
adversary can predict f (x∗) given f (xi ) for various xi 
= x∗.
Formally:

Definition 4: A function family (C, D, R, F) for { fc(·) :
D → R}c←C is unpredictable if for any efficient algorithm
A and auxiliary information z we have:

Pr [(x∗, fc(x∗)← A fc(·)(z) and x∗ 
∈ Q] ≤ negl(κ)

where Q is the set of queries from A, κ is the security
parameter and negl(·) is a negligible function.

In order to define security of biometric key generation
systems, Ballard et al. [35] introduced the notions of Key Ran-
domness (REQ-KR), Weak Biometric Privacy (REQ-WBP)
and Strong Biometric Privacy (REQ-SBP). We formalize
the notion of key randomness by defining Experiment
IND-KRA(κ):

Experiment IND-KRA(κ):
1) A is provided with a challenge (PRFci (z|1), δ),

kb and z, where k0 = PRFci (z|0) and k1 ←R {0, 1}κ
for a bit b←R {0, 1}, corresponding to user i .

2) A is allowed to obtain biometric information x j for
arbitrary users j such that j 
= i .

3) A outputs a bit b′ as its guess for b. The experiment
outputs 1 if b = b′, and 0 otherwise.

Definition 5: We say that a biometric key generation
scheme has the Key Randomness property if there exist
a negligible function negl(·) such that for any PPT A,
Pr[IND-KRA(κ) = 1] ≤ 1/2+ negl(κ).

Theorem 1: Assuming that the PRF is a pseudo-random
function family and that biometric x = (x1, ..., xn) is unpre-
dictable, our Fuzzy Commitment scheme has the Key Random-
ness property.

Proof of Theorem 1 (Sketch): Because c = x − δ, and
x is assumed to be unpredictable, c is unpredictable given δ.
We now show that any PPT adversary A that has advantage
1/2+�(κ) to win the IND-KRA(κ) experiment can be used
to construct a distinguisher D that has similar advantage in
distinguishing PRF from a family of uniformly distributed
random functions.
D is given access to oracle O(·) that selects a random

codeword c and a random bit b, and responds to a query q
with random (consistent) values if b = 1, and with PRFc(q)
if b = 0. D selects a random z, a codeword c′ and a feature
vector x ′, and sets δ′ = x ′−c′. Then D sends γ ′ = (O(z|1), δ′)
and O(z|0) to A.

If b = 0, then pair (γ ′, PRFc′(z|0)) is indistinguishable
from ((PRFc(z|1), δ), PRFc(z|0)), because δ and δ′ follow the
same distribution, c and c′ are unpredictable given δ and thus
both PRFc(·) and PRFc′(·) are indistinguishable from random.
If b = 1, then O(·) is a random oracle, so (γ ′, O(z)) is
indistinguishable from pair ((PRFc(z|1), δ), PRFc(z|0)): c is
unpredictable given δ, therefore PRFc(·) is indistinguishable
from random.

Eventually, A outputs b′, and D outputs b′ as its guess.
It is easy to see that D wins iff A wins, so D is correct with
probability 1/2+�(κ). Therefore, �(·) must be a negligible
function.

REQ-WBP states that the adversary learns no useful infor-
mation about a biometric signal from the commitment and
the auxiliary information, while REQ-SBP states that the
adversary learns no useful information about the biometric
given auxiliary information, the commitment and the key. For
our BKG algorithms, REQ-SBP implies REQ-WBP. In fact,
PRFc(z|1) (which is part of the commitment) is known to
the adversary, and therefore k = PRFc(z|0) does not reveal
any additional information. From the unpredictability of x , it
follows that the output of PRFc does not reveal c, so PRFc(z|1)
and k do not disclose information about x .
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Zdeňka Sitová received the B.Sc. and M.Sc. degrees
in computer science from Masaryk University, Brno,
Czech Republic. She is currently a Bioinformatician
with the Mendel Centre for Plant Genomics and Pro-
teomics, Masaryk University. Her research interests
include data analysis, machine learning, and their
application in life sciences.
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