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Abstract

Biometric key generation techniques are used to reli-
ably generate cryptographic material from biometric sig-
nals. Existing constructions require users to perform a par-
ticular activity (e.g., type or say a password, or provide a
handwritten signature), and are therefore not suitable for
generating keys continuously. In this paper we present a
new technique for biometric key generation from free-text
keystroke dynamics. This is the first technique suitable for
continuous key generation. Our approach is based on a
scaled parity code for key generation (and subsequent key
reconstruction), and can be augmented with the use of pop-
ulation data to improve security and reduce key reconstruc-
tion error. In particular, we rely on linear discriminant
analysis (LDA) to obtain a better representation of discrim-
inable biometric signals.

To update the LDA matrix without disclosing user’s bio-
metric information, we design a provably secure privacy-
preserving protocol (PP-LDA) based on homomorphic en-
cryption. Our biometric key generation with PP-LDA was
evaluated on a dataset of 486 users. We report equal error
rate around 5% when using LDA, and below 7% without
LDA.

1. Introduction

Biometric Key Generation (BKG) harnesses biometric
signals to protect cryptographic keys against unauthorized
access. Freshly-generated keys are committed using bio-
metric information; subsequently, the same biometric sig-
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†J. Šeděnka (sedenka@mail.muni.cz) is a student of Faculty of Science,

Masaryk University, Czech Republic. This work was done while visiting
the New York Institute of Technology.

nal (or a “close enough” signal) is used to reconstruct (i.e.,
decommit) a key.

BKG offers unique and appealing features. Unlike pass-
words, biometric information (and the corresponding key)
is tied to a particular user, and as such cannot be easily
disclosed or stolen (e.g., via shoulder-surfing). Easy-to-
remember passwords provide only marginal security, while
strong passwords are difficult to remember. Ideally, by rely-
ing on high-entropy and consistent biometric signals, BKG
is a good candidate for replacing password-based tech-
niques, because it offers a good tradeoff between usability
and security.

Although originally conceived for physical biomet-
rics [10], such as fingerprints and iris, BKG techniques have
recently been applied to behavioral biometrics. These tech-
niques include key generation using voice [12], handwrit-
ten signatures [6, 8] and keystroke dynamics [13]. Due
to the inherent variability of behavioral signals, current ap-
proaches require users to perform a specific activity while
these signals are collected. For example, techniques based
on voice recognition require users to pronounce the same
sentence (i.e., a passphrase) for both committing and de-
committing a key; BKG based on keystroke dynamics aug-
ments password-based systems by introducing additional
entropy while the user is typing her password.

This work is the first to introduce BKG on free-text in-
put. (In free-text setting, users are allowed to type or say
any text.) Free-text BKG allows periodic key generation
using behavioral data collected continuously, since collec-
tion of biometric signals does not interfere with regular user
activity. Therefore, free-text based systems can capture bio-
metric signals over a long period of time, providing better
accuracy and security.
Contributions. We propose a novel BKG technique that
builds on the fuzzy commitment schemes of Juels et al. [10].
Our work represents a further step towards a formalization
of security of BKG techniques. We define new and more
realistic requirements for biometric signals. In particular,
while fuzzy commitments of Juels et al. are secure under the
unrealistic assumption that all biometric features are uni-



formly distributed, our commitments are provably secure
without any assumption on the distribution of the biometric
features. Instead, we assume that biometric signals are an
instantiation of an unpredictable function [14], which is a
well-understood cryptographic tool.

Furthermore, we extend the error-correcting code to
work on arbitrary biometrics. We then improve commit-
ment/decommitment performance by relying on population
data. We evaluate the feasibility of using Linear Discrim-
inant Analysis [7] (LDA) for improving the EER of our
technique. Since LDA requires data from multiple users,
we design a privacy-preserving protocol (PP-LDA) that al-
lows users to compute LDA parameters without disclosing
their biometric signals. The protocol involves two untrusted
parties: an enrollment server (ES) and a matrix publisher
(MP). To our knowledge, this work is the first to use LDA
(and, consequently, PP-LDA) for the purpose of biometric
key generation.

By using keystroke and digraph latency information, we
were able to achieve 5.5% false accept rate (FAR) and 3.6%
false reject rate (FRR).

Organization. The rest of the paper is organized as fol-
lows. In Section 2 we overview the tools and the security
model used in this paper. Section 3 introduces our modi-
fication of Fuzzy Commitment, and presents our PP-LDA
protocol. In Section 4 we analyze the security of our BKG
technique and of PP-LDA. Experimental evaluation is pre-
sented in Section 5. We summarize related work in Sec-
tion 6 and conclude in Section 7.

2. Background
LDA. Linear Discriminant Analysis [7] (LDA) is a well
known supervised feature extraction method. The goal of
LDA is to derive a new (and possibly compact) set of fea-
tures from the original feature set, such that the new set pro-
vides increased class-discriminability. Formally, LDA finds
direction vectors for projections that maximize linear sepa-
rability between classes (‘users’ in our case). Let v denote
the number of users, Xi be the mi × n matrix of data sam-
ples containingmi n−dimensional training samples of user
i. The mean of Xi is denoted by the row vector µi and µ is
the mean of all µi-s. Let Cm denote the m ×m centering
matrix.

LDA finds the transformation matrix W =
[w1; . . . ;wn−1] that maximizes the objective function
J(W ) = |WTSbW |

|WTSwW | , where the scatter between term ‘Sb’
is calculated as

∑v
i=1(µi − µ)T (µi − µ) and the scatter

within term ‘Sw’ is calculated as
∑v
i=1X

T
i Cmi

Xi. It
can be easily shown that the transformation matrix W
is the solution of the generalized eigenvalue problem
SBW = ΛSWW . After the transformation matrix is
obtained, the new (n− 1) features are calculated as XW .

Fuzzy Commitments and BKG. Fuzzy commit-
ments [10] use error correcting codes to construct
commitments from noisy information, e.g., biometric sig-
nals. Features are extracted from raw signals (e.g., minutiae
from fingerprint images); then, each feature is represented
using a single bit, therefore constructing an n-bit vector
(where n is the number of features) for each sample. Let
C ⊆ {0, 1}n be a group error-correcting code. To commit
a codeword c ∈ C using biometric x = (x1, . . . , xn),
the user computes commitment (H(c), δ = x ⊕ c); the
biometric key is computed as k = H′(c), where H and H′

are two collision resistant hash functions.
To decommit the biometric key using biometric sam-

ple y = (y1, . . . , yn), the user computes codeword c′ =
decode(y ⊕ δ). If H(c′) = H(c), then the biometric key is
computed as k = H′(c′). Otherwise, no information about
the key is revealed. Biometric vector y decommits c iff the
error vector e = x− y decodes to the zero codeword.

Juels et al. [10] prove that the adversary cannot recon-
struct c from a commitment under the assumption that H
and H′ are collision-resistant functions and that x is uni-
formly distributed in {0, 1}n.
Unpredictable functions. In contrast with the technique
in [10], we model biometric features as unpredictable func-
tions [14]. This captures the idea that a user’s biometric
is difficult to guess. Informally, an unpredictable function
f(·) is a function for which no efficient adversary can pre-
dict f(x∗) given f(xi) for various xi 6= x∗. Formally:

Definition 1. A function family (C, D,R, F ) for {fc(·) :
D → R}c←C is unpredictable if for any efficient algorithm
A and auxiliary information z we have:

Pr[(x∗, fc(x
∗)← Afc(·)(z) and x∗ 6∈ Q] ≤ negl(κ)

where Q is the set of queries from A, κ is the security pa-
rameter and negl(·) is a negligible function.

Homomorphic Encryption. Our PP-LDA construction
uses a semantically secure (public key) additively homo-
morphic encryption scheme. Let JmK indicate the en-
cryption of message m using a homomorphic encryption
scheme. (We omit public keys in our notation, since there is
a single public/private keypair generated by MP.) We have
that Jm1K · Jm2K = Jm1 +m2K, which also implies that
JmKa = Jm · aK. While any encryption scheme with the
above properties suffices for the purposes of this work, the
construction due to Damgård et al. [5, 4] (DGK hereafter)
is of particular interest here because it is fast and produces
small ciphertexts.

Fully-homomorphic encryption (FHE) can also be used
to instantiate our PP-LDA protocol. However, due to the se-
vere performance penalty associated with FHE, we design
a protocols that requires only additively homomorphic en-
cryption.



Security Model and Definitions. Our protocols are se-
cure in the presence of semi-honest (also known as honest-
but-curious or passive) participants. In this model, while
participants follow prescribed protocol behavior, they might
try to learn additional information beyond that obtained dur-
ing normal protocol execution.

We use the term adversary to refer to insiders, i.e., pro-
tocol participants. This includes the case when one of the
parties is compromised. Outside adversaries, e.g., those
who can eavesdrop on the communication channel, are not
considered since their actions can be mitigated via standard
network security techniques (e.g., by performing all com-
munication over SSL).

3. Our Techniques
In this section we introduce our BKG construction. To

generate a cryptographic key, the user selects a random
codeword c of length n from a custom error-correcting
code C, and uses it to derive a cryptographic key as k =
PRFc(z), where PRF is a pseudorandom function and
z 6= 0 is either a system-wide public constant or a user-
provided pin/password for added security. (In our security
analysis we assume that the adversary knows z) c is then
protected using the user’s biometrics as follows. After col-
lecting keystroke data, we extract n keystroke and digraph
features x = (x1, . . . , xn), which are then discretized and
scaled by their standard deviation. The user then computes
δ = (x− c) = (x1 − c1, . . . , xn − cn) and publishes com-
mitment (PRFc(0), δ).

The user can reconstruct the cryptographic key given
public parameters (PRFc(0), δ), a biometric signals and
possibly a pin/password z as follows. The user extract
keystroke/digraph features from the sample; then she con-
structs vector y = (y1, . . . , yn). Finally, she computes
c′ = decode(y − δ). If PRFc′(0) = PRFc(0), then
k = PRFc′(z) is the correct key with overwhelming prob-
ability. In the following, we provide further details on our
construction.
Our Construction. In our scheme, each feature is dis-
cretized and mapped to the range [0, 2d−1]. In other words,
codeword symbols are elements of Z2d . Discretization is
performed as:

discretized,F(xj) =

⌊
(2d − 1)

(
xj −minF

maxF −minF

)⌋
where F is the feature being discretized, xj is an instance
in F, minF is the minimum value of F, and maxF is the
maximum value of F. The d parameter controls the num-
ber of cells a feature is discretized into. Therefore, higher
the d, the lower the potential loss of information due to
discretization. When xj > maxF or xj < minF, we set
discretized,F (xj) to 2d − 1 and 0, respectively.

c = 1101000 0101000 0100000 100p000
c1 c2 c3 c4

Figure 1. Example of a SPC codeword. Each codeword symbol ci
for i < n ends with li zero bits. (We write the least significant
li bits of each symbol using non-bold typeface.) The last symbol
ends with ln−1 zero bits, preceded by one parity bit, denoted with
p in the figure.

Distance between two codewords is not defined via the
usual Hamming distance. In fact, Hamming distance cap-
tures well the “similarity” between a bit string and its per-
turbed version when all bits in the string have the same
probability of being affected by an error. In our setting this
is not the case, because the least significant bits of each fea-
ture instance have higher probability of being altered.

Therefore, we instantiate fuzzy commitments using a
custom-designed error-correcting code inspired by codes in
the Lee metric [11]. Let us define Lee weight and Lee dis-
tance as follows:

Definition 2 (Lee weight). The Lee weight of element x ∈
Z2d is defined as wL(x) = abs(x′), such that x′ ≡ x mod
2d and −2d−1 < x′ ≤ 2d−1. The Lee weight of vector
x = (x1, . . . , xn) ∈ (Z2d)n is defined as the sum of Lee
weights of its elements, i.e., wL(x) =

∑n
i=1 wL(xi).

Definition 3 (Lee distance). The Lee distance of vectors
x, y ∈ Z2d is the Lee weight of their difference, i.e.,
dL(x, y) = wL(x− y).

We consider each feature vector a (possibly perturbed)
codeword of a code in Lee metric, and we use the Lee
weight as a metric for distance between feature vectors. We
refer to individual elements in a codeword (i.e., individual
features) as symbols. Features are scaled by the standard de-
viation and discretized as s′i = discretized,F(σi · κ), where
σi is the standard deviation of feature F. Then s′i is mapped
to the closest power of two, which we indicate as si. The li
least significant bits of c are zero in all codewords. (The last
symbol has ln − 1 bits set to zero since the least significant
bit is used for parity.)

Existing codes in the Lee metric only guarantee correct
decoding when the Lee weight of the error is a small multi-
ple of the number of codeword symbols [23, 17]. However,
in our setting the number of codeword symbols is relatively
small (i.e., between 20 and 100), while the domain for each
feature is large (integers between 0 and 224 − 1 in our ex-
periments). Therefore, we use group error-correcting code,
which we refer to as a scaled parity code (SPC). Let n de-
note the number of features, d be the discretization param-
eter, κ the security parameter. A vector c = (c1, . . . , cn) ∈
(Z2d)n is a SPC codeword iff it satisfies the following two
conditions: (a) for all i ∈ {1, . . . , n}, si divides ci; and (b)∑n
i=1 ci/si ≡ 0 mod 2 (i.e., parity condition). Figure 1

shows the structure of a sample codeword.



If the parity condition is not met during decoding, we
select c′k such that |yk − xk| is assumed to be largest (after
normalization) among all |yi − xi|. The parity is corrected
by adding (subtracting) sk to c′k if (yk − δ)− c′k is positive
(negative, respectively).

Our SPC is designed to guarantee that only feature vec-
tors “close” to the user’s template decommit to the correct
codeword. When the number of codeword symbols is ei-
ther one or two, the SPC algorithm decodes vectors to the
closest codeword in the Lee metric.

Theorem 1. Let n ∈ N be the number of features, d ∈ N
the discretization parameter, C ⊂ Zn2d a scaled parity code
with scaling s1, ..., sn, c ∈ C be a codeword and γ = c+ ε
where ε ∈ Zn2d is the error. If the sum of the two biggest
relative errors is smaller than one, Algorithm 1 decodes γ
to c.

(Due to space constraints, proof of Theorem 1 is omitted,
and is available in the full version of the paper [21].)

Algorithm 1 DECOMMIT CODEWORDS IN SPC
0: on input γ = (γ1, . . . , γn),

scaling factors s = (s1, ..., sn):
1: for each feature i do
2: ei = γi mod si // ei is error on feature i
3: if ei/si > 1/2 then
4: ei = ei − si
5: end if
6: end for
7: c′ = γ − e //subtract error
8: p =

∑n
i=1(c

′
i/si) //check parity

9: if p ≡ 1 (mod 2) then
10: k = argmaxi(|ei/si|)

//feature index with max. relative
error

11: c′k = c′k + sign(ek)sk
12: end if
13: return c′ = (c1, . . . , cn)

Privacy-Preserving LDA. To avoid releasing individ-
ual users’ biometrics, we designed a three-party privacy-
preserving linear discriminant analysis protocol, illustrated
in Figure 2. The protocol is executed when new users enroll.
The other two parties involved are the enrollment server
(ES) and the matrix publisher (MP). The user generates bio-
metric samples, encrypts them under the MP’s public key
and sends them to ES. ES stores the user’s samples in en-
crypted form and computes, in conjunction with the user,
the updated encrypted scatter within and scatter between
matrices. The matrices are then sent to MP, which decrypts
them and publishes the corresponding LDA matrix. We as-
sume that MP does not collude with either ES or any user,
as MP can decrypt any encrypted message. Interaction be-
tween the user and ES/MP is necessary only during enroll-

ment. After that, the user is able to generate biometric keys
using local data.

When using LDA for fuzzy commitments, the transfor-
mation matrix is also necessary in order to recover the key
(i.e., to decommit). LDA matrix and scaling factors are not
user-specific, therefore they only reveal information about
the overall population. However, to take full advantage of
the population data – especially to minimize FAR – users
should update their LDA matrix periodically to include data
from new users. (Update interval depends on a number of
factors, such as the number of users, how many users join
the system in a given time interval, etc.) After the matrix is
updated and published, biometric keys must be re-generated
since a biometric signal used with a different transformation
matrix cannot not be used to reconstruct the key. During en-
rollment, each user u holds a mu×n matrix Xu containing
her mu training samples. The LDA algorithm creates a lin-
ear transformation that transforms the feature vectors to a
space where the Fisher’s Discriminant is maximal. Samples
of all enrolled users are required to compute the transfor-
mation.

Our protocol guarantees that the ES does not learn any
information about the users’ input. Similarly, a new user do
not learn information about the biometrics of existing users.

When a new user joins the system, an updated version
of the LDA matrix is generated. In order to prevent the
adversary from extracting information on the new user by
comparing two consecutive LDA matrices, the ES provides
its output to the MP only after a pre-determined number of
users w � 1 have joined the system. This way, the adver-
sary can only learn aggregate information of w users.

4. Security Analysis

To show that our BKG technique is secure, we sepa-
rately prove that it meets the BKG requirements from [1] –
namely, that cryptographic keys are indistinguishable from
random given the commitment (key randomness), and that
given a cryptographic key and a commitment, no useful in-
formation about the biometric can be reconstructed (bio-
metric privacy). Then, we show that the PP-LDA protocol
is secure against a honest-but-curious adversary.

4.1. Key Randomness and Biometric Privacy

In order to define security of biometric key generation
systems, Ballard et al. [1] introduced the notions of Key
Randomness (REQ-KR), Weak Biometric Privacy (REQ-
WBP) and Strong Biometric Privacy (REQ-SBP). We as-
sume that the biometric is unpredictable after revealing li
least significant bits of each feature. Because the least sig-
nificant bits of x are the most affected by noise, we argue
that these bits do not leak information about the d− li most
significant bits of each feature.



Common input: number of biometric features n, number of already enrolled users m, discretization parameter d, public key for additively
homomorphic encryption scheme

User u with input biometric tem-
plate µ

u
= mean(x1, . . . , xk),

v′
u

= var(x1, . . . , xk), SWu =

scatterMatrix(x1, . . . , xn)

ES with input the number of already enrolled users v, encrypted scatter-
within matrix JSW K, encrypted sum of user means Jµ̄K, encrypted sum
of variances Jv̄′K, encrypted products JMtKi,j = Jµi

t
µj
t

K, JLtKi,j =

Jµ̄jµi
t
K for all users t, features i, j, all encrypted products of feature

sums JKKi,j = Jµ̄iµ̄jK

JSWuK, Jv′
u
K, Jµ

u
K

−−−−−−−−−−−−−−−→
JµKi = Jµ̄KiJµ

u
K
i

Jv′Ki = Jv̄′KiJv
′
u
K
i

JSW Ki,j = JSW Ki,jJSWuKi,j
JµK, Jµ̄K, Jµ

t
K for all users t

←−−−−−−−−−−−−−−−
JNKi,j = Jµi

u
µj
u

K

JP Ki,j = Jµ̄Ki
µj
u

JRtKi,j = Jµi
t
K
µj
u

JNK, JP K, JRtK for all users t
−−−−−−−−−−−−−−−→

JKKi,j = JKKi,jJP Ki,jJP Kj,iJNKi,j
JLtKi,j = JLtKi,jJRtKj,i for all users t 6= u
JLuKi,j = JP Ki,jJNKi,j

JSBKi,j =
∏
t JMtK

m2

i,j JLtK
−m
i,j JLtK

−m
j,i JKKi,j

ES update: store values JMuKi,j := JNKi,j , JKKi,j , JLtKi,j ,
Jµ̄K := JµK, Jv̄′K := Jv′K, JSW K = JSW K

ES output: JSW K, JSBK, Jv′K

MP decrypts ES’s output and computes the solutions W = [w1, . . . , wn−1], Λ = (λ1, . . . , λn−1) of the generalized eigenvalue prob-
lem SWw = λSBw and transforms v′ into the LDA space as v. Then, it publishes, W , Λ, v.

Figure 2. Privacy-Preserving LDA protocol for enrolling user u.

Key Randomness We formalize the notion of key ran-
domness by defining Experiment IND-KRA(κ):

Experiment IND-KRA(κ)

1. A is provided with a challenge (PRFci(0), δ), kb and
z, where k0 = PRFci(z) and k1 ←R {0, 1}κ for a bit
b←R {0, 1}, corresponding to user i.

2. A is allowed to obtain biometric information xj for
arbitrary users j such that j 6= i.

3. A outputs a bit b′ as its guess for b. The experiment
outputs 1 if b = b′, and 0 otherwise.

Definition 4. We say that a biometric key generation
scheme has the Key Randomness property if there exist
a negligible function negl(·) such that for any PPT A,
Pr[IND-KRA(κ) = 1] ≤ 1/2 + negl(κ).

Theorem 2. Assuming that the PRF is a pseudo-random
function family and that biometric X = (x1, ..., xn) is un-
predictable given li least significant bits of each feature i,
our Fuzzy Commitment scheme has the Key Randomness
property.

Proof of Theorem 2 (Sketch). Let C be a set of codewords
such that |C| = 2

∑n
i=1(d−li) and the least significant li bits

of each symbol i of all codewords in C are 0. If c is selected
uniformly from C, the most significant d − li bits in each
codeword symbol i are uniformly distributed in {0, 1}d−li .
Since x is unpredictable given the least significant li bits
in each feature and the most significant d − li bits of each
symbol ci are uniformly distributed, we have that x is un-
predictable given δ. Because c = x − δ, c is unpredictable
given δ.

We now show that any PPT adversary A that has advan-
tage 1/2 + ∆(κ) to win the IND-KRA(κ) experiment can
be used to construct a distinguisher D that has similar ad-
vantage in distinguishing PRF from a family of uniformly
distributed random functions.
D is given access to oracle O(·) that selects a random

codeword c and a random bit b, and responds to a query q
with random (consistent) values if b = 1, and with PRFc(q)
if b = 0. D selects a random z, c′ ← C and x′ ← X , and
sets δ′ = x′ − c′. Then D sends (O(0), δ′), O(z) to A.
c is unpredictable given the least significant li bits of

each codeword symbol, and δ′ is chosen from the same dis-



tribution as δ. If b = 0, (PRFc(0), δ),PRFc(z) is indis-
tinguishable from (PRFc′(0), δ′),PRFc′(z), because the
δ and δ′ follow the same distribution, c and c′ are unpre-
dictable given δ and thus the output of both PRFc(·) and
PRFc′(·) are indistinguishable from random. If b = 1,
then O(·) is a random oracle, so (O(0), δ′), O(1) is indis-
tinguishable from pair (PRFc(0), δ),PRFc(1). δ and δ′

are chosen from the same distribution and c is unpredictable
given δ, so PRFc(·) is indistinguishable from random.

Eventually, A outputs b′, and D outputs b′ as its guess.
It is easy to see that D wins iff A wins, so D is correct
with probability 1/2 + ∆(κ). Therefore, if ∆(·) is non-
negligible, D can distinguish PRF from a random function
with non-negligible advantage over 1/2. However, this vio-
lates the security of the PRF; hence, A cannot exist.

Weak and Strong Biometric Privacy. REQ-WBP states
that the adversary learns no useful information about a bio-
metric signal from the commitment and the auxiliary in-
formation, while REQ-SBP states that the adversary learns
no useful information about the biometric given auxiliary
information, the commitment and the key. It is easy to
see that, in our BKG algorithms, strong biometric privacy
implies weak biometric privacy: key k is computed as
PRFc(z); since the adversary knows PRFc(0) as part of
the commitment, PRFc(z) does not add useful information.

We assume that the adversary has access to all public
information – i.e., the LDA matrix, the vector of aggre-
gate variances in the LDA space and all system parame-
ters – and user-specific information such as the commitment
(PRFc(0), δ), a list of keys computed as ki = PRFc(zi)
and a list of values zi.

Since the output of PRFc does not reveal c, PRFc(0)
and ki-s do not disclose information about x. On the other
hand, δ reveals the least significant li bits of x. However, x
is unpredictable given its li lest significant bits. Therefore,
x cannot be reconstructed from PRFc(0), ki and δ. Since c
is uniformly distributed in C, δ does not reveal information
about the most significant d− li bits of x. Moreover, the li
least significant bits of x are highly perturbed by noise and
therefore do not reveal useful information about the biomet-
ric signal.

4.2. Security of LDA Protocol

We argue that the protocol in Figure 2 is secure, i.e., that
ES does not learn any information about a specific user bio-
metric, and that MP only learns SB and SW . In particular,
the user does not possesses the decryption key for the ho-
momorphic encryption, and all messages from ES are en-
crypted. Since the encryption scheme is semantically se-
cure, the user cannot extract any information from the pro-
tocol execution.

When interacting with the user, ES’s view of the protocol
consists in the encrypted values from the user, encrypted

values from previous runs of the protocol and the number
of users v. The output of the server is JSW K, JSBK and Jv′K.
Because of the semantic security of the encryption scheme,
ES cannot tell if the latter three values are replaced with
encryptions of random elements. Therefore, the protocol
does not reveal any information to ES.

During its interaction with MP, ES does not learn any
additional information, because it does not receive any
message from MP. MP receives encrypted values JSW K,
JSBK, Jv′K, that is able to decrypt. As we argue next, SW ,
SB and v do not leak information about a specific user if
computer over a set of users.

4.3. Information Leakage through SW and SB

Individual SWu reveal significant information about a
single user’s biometric. For example, they leak feature vari-
ance and correlation between features for u. However, by
averaging all users’ scatter within matrices into SW , infor-
mation about single users is no longer available. In particu-
lar, the larger the number of users, and more uniform their
selection, the closer SW will be to the value corresponding
to the general population, which is assumed to be known.
The same argument applies to both SB and Jσ′K.

However, two tuples of elements (SW
t1 , SB

t1 , σ′
t1) and

(SW
t2 , SB

t2 , σ′
t2) generated at different points in time

t1, t2 reveal aggregate information corresponding to the
users who enrolled between t1 and t2. If only a single user
enrolls between t1 and t2, then it is possible to reconstruct
SWu as SWt2 − SWt1 . Therefore, in order to prevent this
attack, SW , SB and v′ should be updated in batches.

5. Experimental Evaluation

In order to quantify the biometric performance and key
reconstruction reliability of our BKG technique, we per-
formed free-text typing experiments on 486 volunteer sub-
jects. Each subject was asked to answer between 10 and
13 questions, typing at least 300 character in each answer.
Data was collected in two separate 45-to-120 minute ses-
sions, which took place on different days. Experiments
were performed using a custom Java GUI, which recorded
keystroke with a 15.625 ms resolution, and on a standard
QWERTY keyboard.

We used two feature subsets of features: the 23 most
available keyhold features,1 and keyhold features supple-
mented with 9 most available digraph features.2 These fea-
tures were chosen based on the availability in the first ses-
sion. We then removed outliers by deleting all feature val-
ues higher than 500 ms. Finally, we discretized each feature
in the range from 0 to 500 ms.

1‘Spacebar’, ‘E’, ‘O’, ‘I’, ‘A’, ‘S’, ‘H’, ‘N’, ‘R’, ‘T’, ‘L’, ‘D’, ‘U’, ‘Y’,
‘W’, ‘G’, ‘P’, ‘C’, ‘M’, ‘B’, ‘F’, ‘V’, ‘K’.

2‘HE’, ‘IN’, ‘TH’, ‘ER’, ‘AN’, ‘RE’, ‘EN’, ‘ND’, ‘HA’.



keyhold+digraph keyhold only
minutes entropy FAR FRR availability entropy FAR FRR availability

with LDA
4 99.95% 5.6% 6.8% 81.5% 97.7% 6.9% 14.1% 94.4%
8 99.95% 5.5% 3.6% 98.3% 96.8% 7.7% 8.0% 99.6%

w/o LDA
4 81.9% 9.2% 9.8% 82.7% 62.1% 12.7% 15.1% 94.4%
8 87.6% 6.6% 6.9% 99.0% 67.7% 11.3% 10.1% 99.7%

Table 1. BKG results. Whole training session was used for creating commitments, 4-minute and 8-minute slices from testing session were
used for key retrieval. We report availability as the percentage of time slices that contain at least two vectors with all required features.

computation communication
features users user ES MP user-ES ES-MP
23 250 13 min 39 s 40 min 43 s 4 s 17 MB 135 KB
23 500 27 min 9 s 81 min 14 s 4 s 34 MB 135 KB
31 250 26 min 22 s 78 min 42 s 8 s 33 MB 260 KB
31 500 52 min 33 s 157 min 16 s 8 s 65 MB 260 KB
Table 2. Computational and communication overhead for PP-LDA protocol.

Data from the first session was used to create the com-
mitments (biometric keys). For each user, we obtained per-
feature variance and mean from the whole session. We used
the mean to commit to the user’s cryptographic key (see
Section 3), and the per-user variance to compute the global
variance.

5.1. False Accept/Reject and Availability

A standard metric for evaluating biometric systems is
equal error rate (EER), which is defined as the value that
FAR and FRR assume when they are equal. In our sce-
nario, we have a false reject when a user’s biometric fails to
decommit the user’s cryptographic material – i.e., when the
biometric sample is not close enough to the original biomet-
ric. False accept is defined as the event when a user’s bio-
metric can be used to successfully decommit another user’s
cryptographic information.

When dealing with discrete systems, FAR and FRR
might never assume the same value. In this case, we ap-
proximated EER by reporting both FAR and FRR at their
minimum distance. Entropy is reported as the percentage of
maximum Shannon entropy of discretized user templates in
our dataset available through our BKG algorithm.

To evaluate FAR without LDA, we implemented a zero-
effort impostor attack. This attack consists in employing
a user’s biometric to decommit other users’ cryptographic
keys. With LDA we used cross-validation instead of zero-
effort attacks. We enrolled all users except for one, which
we refer to as impostor. We then used impostor biometric
data to attempt to decommit enrolled users’ biometric keys.
We repeated this experiments for each user, so that all of
them could act as impostor. Using impostors that were not
enrolled in the system gives better chance to succeeding in
the attack, as the LDA transformation can maximize sepa-
ration among users that are enrolled in the system.

Results are presented in Table 1 for both keyhold fea-
tures alone and for keyhold with digraph. The results clearly

show that using LDA improves both FAR/FRR and entropy.
With 4-minute slices of testing data and using both keyhold
and digraph features, LDA improved FAR-FRR from 9.2-
9.8% to 5.6-6.8%. With 8-minute slices, the FAR-FRR im-
proved from 6.6-6.9% to 5.5-3.6% using LDA.

One important issue to address is availability of the bio-
metric. Each feature used for generating the key must also
be used for decommitting, as both LDA and our error-
correcting code cannot handle erasures. Our results show
that 4-minute (8-minute) sample of keystrokes carries all
the required information with probability greater than 94%
(99%, respectively) for keystroke only, and over 81% (98%,
respectively) samples have all the required keystrokes and
digraphs. The FAR/FRR results are improved when more
keystrokes/digraphs are available for each feature, at the
cost of lower availability. Both results for 1 minimum sam-
ple and 2 minimum samples are provided in Table 1.

5.2. Computational Overhead of PP-LDA

The overhead in our privacy-preserving protocol is dom-
inated by encryptions, decryptions and operations in the
encrypted domain. We instantiated our protocol using the
DKG [5, 4] cryptosystem with 1024bit key, 160bit sub-
group size and 65bit plaintext size. We run our Java single-
threaded prototype implementation on a desktop computer
with Intel Xeon E5606 CPU at 2.13 GHz with 48 GB RAM
running on Windows 7.

The amount of computation and communication depends
on the number of features, indicated with n, and the num-
ber of enrolled users m. During the protocol, a new user
performs O(n2) encryptions and O(mn2) exponentiations.
The enrollment server computes O(mn2) multiplications
and exponentiations, and the matrix publisher does O(n2)
decryptions. The overall amount of communication in both
rounds is O(mn2) between the user and enrollment server
and O(n2) between the ES and MP.

The overhead of PP-LDA is reported in Table 2. Because



both the computation and communication depend on multi-
ple parameters, we report representative parameter combi-
nations corresponding to our settings.

Our experiments confirm that the cost of the PP-LDA
protocol is relatively small, since the protocol is only exe-
cuted once for each new user.

6. Related Work

BKG based on Behavioral Biometrics. Monrose et
al. [12] evaluate the performance of BKG based on spoken
password using data from 50 users. They report a false-
negative rate of 4%.

Handwritten signature is another behavioral modality,
where biometric key generation has been studied. Multiple
papers, for example by Freire et al. [8], Feng et al. [6] and
more recently Scheuermann et al. [18] evaluate the perfor-
mance. The dataset sizes for the first three papers are 330,
25 and 144 users; the last paper does not include the number
of users. The FRR/FAR presented in [8] are 57% and 1.7%
respectively, with skilled forgeries, 8% EER in [6].

BKG based on Physical Biometrics Physical biometrics
have also been used for biometric key generation, evaluated
on fingerprints by Clancy [3] et al., Uludag et al. [20], Sy
and Krishnan [19] and others. BKG on iris was studied by
Rathgeb and Uhl [16], [15] and Wu et al. [22], and on face
images by Chen et al. [2].

Passwords Hardening In [13], Monrose et al. use
keystroke timing for increasing entropy (or “hardening”)
users passwords. Their technique extracts entropy from
keystroke data, but does not use free-text and also does not
generate keys.

Privacy-Preserving LDA. The problem of computing
LDA on horizontally and vertically partitioned data has
been addressed in [9] by Han and Ng. However, their pro-
tocol is not suitable in our setting. In particular, their tech-
nique addresses the problem where two parties have differ-
ent partitions of a dataset, and want to compute a joint LDA
matrix. In our scenario, however, we have many parties (the
users) who want to compute a common LDA matrix.

7. Conclusion

Biometric key generation is an important and general
primitive that can be used – among other things – for au-
thentication, encryption and access control. In this paper we
present the first BKG algorithm suitable for continuous au-
thentication, based on keystroke dynamics. Our algorithm
uses LDA to improve reliability and biometric performance.
We therefore designed and implemented a secure privacy-
preserving protocol for computing and updating LDA pa-
rameters using all users’ biometric signals.

Biometric performance and computational overhead of
our techniques are evaluated on a prototype implementa-
tion. Our experiments show that our BKG technique has
low EER (between 3.6% and 5.5%), and limited overhead.
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