
1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

1

Privacy-Aware Caching
in Information-Centric Networking

Gergely Acs, Member, IEEE, Mauro Conti, Senior Member, IEEE, Paolo Gasti, Member, IEEE,
Cesar Ghali, Member, IEEE, Gene Tsudik, Fellow, IEEE, Christopher A. Wood, Member, IEEE

Abstract—Information-Centric Networking (ICN) is an emerging networking paradigm where named and routable data (content) is
the focal point. Users send explicit requests (interests) which specify content by name, and the network handles routing these
interests to some entity capable of satisfying them with the appropriate data response (producer). One key feature of ICN is
opportunistic in-network content caching. This property facilitates efficient content distribution by reducing bandwidth consumption,
lessening network congestion, and improving the content retrieval latency by users (consumers). Unfortunately, the same feature is
also detrimental to privacy of content consumers and producers. Simple to implement, and difficult to detect, timing attacks can
exploit ICN routers as “oracles” and allow an adversary to learn whether a nearby consumer recently requested certain content. The
attack leverages a timing side channel that relies on router caches and is implemented by requesting a few packets from each piece
of content being probed. Similarly, probing attacks that target content producers can be used to discover whether certain content
has been recently distributed. After analyzing the scope and feasibility of such attacks, we propose and evaluate some efficient
countermeasures that offer quantifiable privacy guarantees while retaining the benefits of ICN.

Index Terms—information-centric networking (ICN), named-data networking (NDN), content-centric networking (CCN), cache
privacy, timing attacks.

F

1 INTRODUCTION

T ODAY’S Internet has become a de facto public utility with a
large percentage of the world’s population relying on it for

numerous activities. However, despite its unparalleled success
and popularity, the current IP-based architecture is rapidly aging.
As a consequence, a number of research efforts [30] have
recently started in preparation for the next-generation Internet
architecture.

One key motivator for a new Internet architecture is the
fundamental shift in the nature of traffic. What was once mainly
low-bandwidth interactive (e.g., remote log-in) and store-and-
forward (e.g., email) communication in the early days of the
Internet is now web- and content-dominated traffic. At the same
time, massive and ever-increasing amounts of content continue
to be produced and consumed (distributed) over the network.
This phenomena is manifested over file sharing services such
as Dropbox and media sites such as YouTube and Netflix. In
summary, communication in the Internet has shifted from a
telephony-like conversation between two IP interfaces towards
a consumer who wants content and wants it fast, regardless of
where it comes from. This motivates reconsidering the current
Internet architecture and exploring alternatives.

Information-Centric Networking (ICN) is an emerging net-
work architecture in which the focal point is named and routable
data (content), rather than hosts and addresses. In ICN, a con-
sumer requests content by name (i.e., expresses interests for the
content) and the network takes care of finding and returning

- M. Conti was supported by Marie Curie Fellowship PCIG11-GA-2012-
321980, the EU TagItSmart! Project (agreement H2020-ICT30-2015-
688061), the EU-India REACH Project (agreement ICI+/2014/342-896),
and by the project “Content Centric Networking: Security and Privacy
Issues” funded by the University of Padua.

- C. Ghali, G. Tsudik, C. A. Wood are with the Department of Computer
Science, University of California, Irvine, CA, 92697.

- P. Gasti, C. Ghali and G. Tsudik were supported by the NSF under
project CNS-1040802 – “FIA: Collaborative Research: Named Data
Networking (NDN).”

- P. Gasti performed work in part while at UC Irvine. C. A. Wood is
supported by the NSF Graduate Research Fellowship DGE-1321846.

the data. The ICN approach moves hosts into the background by
treating named content as a first-class object. One important ICN
feature is opportunistic in-network content caching. Its goal is to
reduce congestion while improving throughput and latency for
popular content. In contrast to IP, ICN routers can often satisfy
interests using previously forwarded content. Consequently, con-
tent might be served from a router’s cache rather than its original
producer.

Despite its obvious benefits, content caching in ICN raises a
major privacy issue that we summarize below and then discuss,
in more detail, in Section 3. Suppose an adversary Adv wants to
determine whether a consumer (Alice) recently requested certain
content C. Assume Adv and Alice share a first-hop ICN router
R, e.g., they are neighbors who are served by the same ISP,
and Adv can measure the round-trip time (RTT) to R (Adv ↔
R). Adv issues an interest for C and measures the corresponding
RTT. By comparing the expected and actual RTTs after retrieving
C, Adv can determine whether C was retrieved from R’s cache,
which indicates that Alice previously requested it.1 Specifically,
if two RTTs are approximately equal, then Adv can conclude
that C must have been served by R.

Similarly, suppose that Adv wants to learn whether a content
producer (Bob) has been recently asked for, and has subsequently
distributed, C. Assuming that Adv and Bob are separated by at
least one router, Adv measures or estimates the RTT between
itself and Bob and then requests C. If the latter RTT is lower
than the former, Adv concludes that C was fetched from some
ICN router cache and, therefore, at least one consumer recently
requested it. Furthermore, a combination of these two attacks
can be used to learn whether two parties (Alice and Bob)
have been recently, or still are, involved in two-way interactive
communication, e.g., voice communication or SSH.

These attacks do not require Adv to have any special priv-
ileges: the interaction between Adv and ICN routers is normal.
It might appear that Adv can learn the same information by
simply eavesdropping on Alice or Bob. However, eavesdropping

1. Clearly, there might be other users, besides Alice and Adv. However,
this would not change the nature of the attack.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

2

requires colocation with Adv since it must also be physically
near the victim (e.g., the same ethernet segment, wired or
wireless). In contrast, the aforementioned attacks require neither
real-time presence nor proximity. Moreover, using encrypted
links between consumers and their first-hop routers prevents Adv
from successfully eavesdropping on their traffic.

At first glance, ICN seems inherently safe against cache pri-
vacy attacks: if k > 1 consumers share the same router’s cache,
Adv cannot determine exactly which or how many requested
particular content (if the content does not expose consumer-
identifying information). Thus, consumers seem to benefit from
some form of k-anonymity. However, for many types of traffic,
e.g., email, instant messaging, and voice, consumer identities can
be determined from the content or its name.2 Moreover, even k-
anonymity may be insufficient if Adv possesses any auxiliary
information about neighboring consumers, or it simply wants to
determine whether any consumer requested a particular piece of
content.

Note that content encryption is not sufficient to mitigate these
attacks. Encryption conceals the payload of a content object and,
optionally, part of the name. However, names cannot be fully
encrypted, since doing so would prevent content objects from
being routed.3

Based the above discussion, there is an inherent conflict
between utility of in-network caching and privacy for consumers
and producers. The resulting privacy problem and potential
countermeasures are the subject of this paper. We believe it is
imperative to address or at least mitigate them before ICN can
be deployed on a large scale.

To the best of our knowledge, we were the first in addressing
these problems with our previous work in [3], for which the
current paper is an extended version. In particular, in the current
paper, we extend [3] with the additional following contributions:

• Elaboration upon the efficacy of cache timing attacks in
CCN and NDN – two types of ICN architectures.

• Extension of the cache privacy attack to local and dis-
tributed adversaries.

• Complete proofs for the privacy-preserving cache mecha-
nisms.

• A protocol to improve the efficiency of privacy-preserving
caches in trusted domains.

Organization. Section 2 overviews ICN. We show how to
perform privacy attacks, and evaluate their effectiveness with
experiments run on the current NDN testbed [28], in Section 3.
Our adversary and privacy models are described in Section 4.
Next, sections 5 discusses proposed countermeasures for local
adversaries. Distributed (non-local) adversaries are covered in
Section 6. Considerations for both scenarios are discussed in
Section 7. Improvements to our countermeasures that aim at
reducing the delay of content delivery are explored in Section 8.
Experimental evaluation and real-world impact of our counter-
measures are presented in Section 9. An optimization that further
reduces the overhead of our countermeasures and improves
the end-user experience is proposed in Section 10. Section 11
reviews related work. Finally, we present our conclusions and
future directions in Section 12.

2. In practice, it is likely that this type of interactive or consumer-specific
traffic would be encrypted end-to-end, thereby rending caching useless. We
discuss this in more detail in Section 5.1.

3. Onion routing over Named-Data Networking (NDN) – an instance
of ICN – has been investigated in [10] and [34]. These approaches allow
parties to encrypt content names. However, they both incur a non-negligible
performance burden.

2 ICN ESSENTIALS

This section provides an overview of the essential parts of
ICN by explaining Named-Data Networking (NDN) [27] and
Content-Centric Networking (CCN) [1], both of which are
derivatives of the general ICN architecture. Given familiarity
with the subject and both of these variants, this section can be
skipped without loss of continuity.

2.1 NDN Overview

NDN [27], [37], [19] is one of the National Science Foundation’s
Future Internet Architecture (FIA) projects4, is a network archi-
tecture based on named content. Rather than addressing content
by location, NDN refers to it by human-readable names. A
content name is composed of one or more variable-length com-
ponents that are opaque to the network. Component boundaries
are explicitly delimited by “/” in the usual URI representation.
For example, the name of a BBC news content for October
10, 2015 might look like: /bbc/news/2015oct10. Large
pieces of content must be split into chunks or fragments. For
example, chunk 263 of a YouTube video published by Alice
could be named: /youtube/alice/concert.avi/263.
Since NDN’s main abstraction is content, it is not possible to
directly address “nodes” (routers), although their existence is
assumed.

NDN communication adheres to the pull model: data is
delivered to consumers only upon explicit request. A consumer
requests content by sending an interest with the name of the
desired content. If an entity such as a router or a host forwarder
can “satisfy” a given interest it returns the corresponding content.
A content named N is never forwarded or routed unless it is
preceded by an interest for name N . Strictly speaking, a content
named N ′ 6= N is considered a match for – and therefore
can be sent in response to – an interest for N if and only if
N is a prefix of N ′, e.g., /BBC/news/2015oct10 matches
/BBC/news/. In other words, content name matching in NDN
is based on longest-prefix matching. Interest and content are the
only types of packets in NDN.

According to the current specifications [2], interest message
packets contain several delegated fields. In this paper we are only
interested in the following:
• Name – NDN name of the requested content.
• Scope – specifies how far the interest message will be

transmitted. Scope can take one of these values:
– 0 – do not propagate beyond the local NDN daemon,
– 1 – only propagate to the application layer of the current

NDN node,
– and 2 – do not propagate beyond the next hop node.

This guarantees that interests will either be satisfied or
dropped by the NDN node that is only one hop away.

• Exclude – contains information about name components
that must not appear in the name of a returned content. This
field can be used to exclude one or more content objects by
referring to their hash, which as noted above, is considered
to be an implicit last component of each content name.

Content object packets also have a Name and Payload field.
We will describe the use of these later.

All NDN nodes (consumers, routers, and producers) maintain
the following three components [8]:

4. In today’s Internet, security and privacy problems were (and are still
being) identified along the way and patches are retrofitted; some haphazardly.
In contrast, the NSF FIA program stresses early awareness as well as support
for features and counter-measures, from the outset. To this end, security and
privacy issues in all FIA projects, including NDN, are being investigated.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

3

• Content Store (CS) – A cache used for content caching and
retrieval. (From here on, we use the terms CS and cache
interchangeably.)

• Forwarding Interest Base (FIB) – A routing table that maps
name prefixes to outbound network interfaces.

• Pending Interest Table (PIT) – A table that maps currently
not-yet-satisfied (i.e., pending) interests to sets of corre-
sponding inbound interfaces. Values (entries) in the PIT also
store additional metadata (see [14]), but that is not useful
for this work.

When a router receives an interest for name N , and there are
no pending interests for a matching name in its PIT, it forwards
the interest to the next hop(s) according to its FIB. For each
forwarded interest, a router stores the interest name N and the
interface on which it arrived in the PIT. However, if an interest
for N arrives while there is already an entry for the same content
name in the PIT, the router collapses the present interest (and any
subsequent ones for N) and stores only the interface on which
it was received. When content is returned, the router forwards
it out on all interfaces on which an interest for N has arrived
and flushes the corresponding PIT entry. Since no additional
information is needed to deliver content, an interest does not
carry a “source address”.

Each NDN router can have a cache whose size is determined
by local resource availability. Routers unilaterally determine
what content to cache (if any) and for how long. Whenever
an interest is received, a router first checks whether it can be
satisfied from its cache. Therefore, NDN also lacks the notion of
“destination address” since content objects can be served from
any node (router or host) in the network. For this reason, most
content objects carry a digital signature created by the original
producer5 in order for consumers (and in some cases routers
[14]) to verify the authenticity of content, regardless of which
entity actually served it in the network.

2.2 CCN Overview
CCN [1] is a research project lead by PARC. In general, the CCN
and NDN protocols are quite similar.6 However, some differ-
ences between the two are important from a privacy perspective.
We highlight some of the distinct CCN properties relevant to this
paper below.
• CCN content matching is based on an exact match. A named

content satisfying an interest must include the exact same
name in the corresponding interest.

• There are no Scope or Exclude fields in interest mes-
sages.

Enforcing exact content name matching and removing the
Scope and Exclude fields eliminates one critical privacy
attack we discuss in the next section.

3 CACHE PRIVACY ATTACKS
In this section we describe the cache privacy attacks mentioned
in Section 1. Our goal is to show that Adv can learn whether
specific content C was recently requested by consumer Cr
(Alice) by probing R’s cache. To do so, Adv issues an interest
for C and measures the delay τ1 required to retrieve it. It then
picks another (existing) content C ′ and requests it twice in rapid
succession. The first time, C ′ might be fetched from its original
producer P or from R’s cache. However, the second time, C ′ is
fetched from R’s cache with high probability. Let τ2 denote the

5. Exceptions to this include nameless content objects, and content object
authenticated via MACs.

6. In fact, NDN’s codebase and design originated with an early version of
CCN.

retrieval delay for the latter. If τ1 ≈ τ2, Adv concludes that Cr
recently requested C. Otherwise, if τ1 > τ2, Adv decides that C
has not been recently requested by anyone from its side of R.7

This simple timing attack is applicable to all ICN architec-
tures that employ in-network caching. In NDN, however, it is
even easier to discover the content of R’s cache by exploiting
the Scope and Exclude interest fields. Specifically, Adv can
set the Scope field of an interest for R to “2”. This value
means that the interest can traverse at most two NDN entities,
including the source. Thus, if Adv receives C for an interest
with Scope equal to 2, then, regardless of the delay, C must
have been satisfied from R’s cache. To make matters worse,
Adv is not even required to guess the name of C to discover its
presence. Together, longest-prefix matching on content names
and the Scope and Exclude fields can be used to implement
an NDN-specific feature called harvesting. To show how this
works, assume that Adv sends an interest to R with the name
“/” and scope equal to 2. This ensures that R will satisfy the
interest from its cache with a content object C1 whose name is
prefixed with “/”. Since this criteria holds for any content with
a valid name, R will always reply from its cache with some
content object. Adv can then send another interest with the name
“/” and scope equal to 2 which excludes C1. This causes R
to respond with another content from its cache C2 6= C1. Adv
can easily repeat this process indefinitely to receive a copy of all
content in R’s cache and, as a result, harvest that cache without
doing any timing measurements. To prevent or mitigate this
exploit, NDN routers are allowed to disregard the Scope and
Exclude fields without significantly affecting any networking
functionality. Therefore, we do not discuss harvesting further and
only focus on time-based attacks.

To illustrate the ease of carrying out these timing attacks, we
ran some experiments using the topology shown in Figure 1. It
includes: (1) consumer Cr, (2) router R, (3) producer P , and
(4) adversary Adv. P is reachable by Cr and Adv only through
R. We also assume that only Cr and Adv are served by R as
their fist-hop router, though we will later relax this assumption.
In all of our experiments, P publishes 1000 content objects with
different names. Moreover, the type and characteristics of the
links connecting Cr, Adv, and P to R differ based on each
experiment setup. We describe the detailed setup and experiment
outcomes below.

Fig. 1. Cache privacy attack experimental setup

Consumer Privacy in LAN Environment. In this environment,
Cr, Adv and P are all connected to R via wired Ethernet.
Cr starts by requesting all published content objects, which
causes them to be cached by R. Then, Adv requests the same
content objects which are promptly fetched from R’s cache.
We measure average delays for retrieving content from P and
R. The results, illustrated in Figure 2(a), show the probability
distribution function (PDF) for these delays. In this experiment,
Adv can determine with probability greater than 0.99 whether C
is retrieved from R’s cache.
Consumer Privacy in WAN Environment. We also run similar
experiments in a WAN topology using the NDN testbed [28]. In

7. τ1 < τ2 may occur. Since τ1 ≈ τ2, it may be the case that τ1 < τ2
due to time resolution errors.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

4

3.3 4.3 5.3 6.3 7.3 8.3 10.312.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time [msec]

P
D

F

Cache hit

Cache miss

(a) Consumer privacy in LAN environment

4.5 5.5 6.5 7.5 9.5 12.6 15.8 22.1
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [msec]

P
D

F

Cache hit

Cache miss

(b) Consumer privacy in WAN environment

0.4 0.6 0.9 2 3 4 5 7.1 12.1
0

0.05

0.1

0.15

0.2

0.25

Time [msec]

P
D

F

Cache hit

Cache miss

(c) Consumer privacy in local environment

180 190 200 210 220
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [msec]

PD
F

Cache hit
Cache miss

(d) Producer privacy in WAN environment

Fig. 2. Timing Attack Results

this case, Cr and Adv both connect to the same first-hop router
R′ via Ethernet. R′ is 3 hops away from R via a WAN link.
Similarly, P is also 3 hops away from R over WAN. Figure 3
shows the setup of this experiment and Figure 2(b) shows the
results. Clearly, the presence of additional hops increases delay
and introduces some variance. However, Adv can still determine
whether C is retrieved from R’s cache with probability greater
than 0.99.

Fig. 3. Consumer privacy in WAN environment topology

Consumer Privacy in a Local Environment. The two attacks
described thus far (in LAN and WAN environments) are also
applicable to the local cache of a specific ICN node, e.g., a laptop
or Android smartphone [7] with a cache shared among several
applications, as shown in Figure 4. A malicious application can
abuse this cache by employing the same probing techniques
described above, hence learning which content was retrieved
by a honest application running on the same host. Figure 2(c)
summarizes our results in the local environment settings.

The difference between cache hits and cache misses is even
more evident than in previous experiments, because the cost of
retrieving content locally is significantly lower than the cost of
retrieving content from a different node. In this setting, Adv
learns information about cached content requested by other
applications with overwhelming probability.

Fig. 4. Consumer privacy in local environment topology

Producer Privacy in WAN Environment. We now turn to
producer’s privacy as described in Section 1. We consider the
topology in Figure 5, where P is directly connected to R, while
Cr and Adv are three hops away. Adv’s goal is to determine
whether C was recently served by P and is cached by R.

Figure 2(d) summarizes the results of our experiments. In
this setting, Adv can distinguish whether C is served from
R with probability 0.59 by probing a single content object.
However, as mentioned in Section 2, large pieces of content
are typically split into several (smaller) pieces and transmitted
as multiple content objects. In practice, the correlation between
such objects could be exploited to improve Adv’s cache privacy
attack accuracy, because Adv only needs to determine whether
one of the correlated content object pieces has been served by P .
However, in the following analysis, we will assume that chunks
of a partitioned content object are independent.

Let success denote the event where Adv successfully deter-
mines whether a single content object is fetched from the cache,
and let fail denote failure to do so. Since fail and success are
independent for all content objects, overall probability of failure
(FAIL) can be expressed as:

Pr[FAIL] = (Pr[fail])n

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

5

Fig. 5. Producer privacy in WAN environment topology

Similarly:

Pr[SUCCESS] = 1− (Pr[fail])n

In our experiment we have Pr[success] = 0.59, and therefore
Pr[fail] = 0.41. If a large content is split into eight content
objects, then the probability of a successful cache privacy attack
can be increased to Pr[SUCCESS] = 1− 0.418 ≈ 0.999

4 SYSTEM, ADVERSARY AND PRIVACY MODEL

In this section we introduce our system, privacy, and adversary
models.

4.1 System Model
Let Σ∗ and Γ denote the universes of all names (some finite
alphabet Σ) and content objects, respectively. As before, let R
be an router. Internal state of R is represented by a function
S : Γ → Σ∗ ∪ {0} that, for a given content object C in R’s
cache, represents the number of times C has been forwarded.
S(C) = 0 for all C not in R’s cache. We assume that C can
appear in R’s cache only if it has been previously forwarded
by R.

We define a cache management algorithm CM that uses R’s
internal state to determine what content forwarded by R needs
to be cached. CM also controls how R responds to interests
that correspond to cached content. Without loss of generality,
we assume that consumers have access to content only through
R, i.e., R is their only choice as a first-hop router. To simplify
the presentation of our results, we do not make any assumption
on the size of R’s cache, because cache size has only marginal
impact on the results presented in the rest of the paper. We also
make no assumptions about how CM responds to interests that
match content in its cache, e.g., CM is free to ignore the cache
altogether for some incoming interests. Finally, we assume that
CM can hide cache hits (e.g., by simply not using its cache) but
cannot hide cache misses.

By interacting with R, consumers are allowed to determine
whether a specific content has been forwarded by R via probing
attacks. We model this by an algorithm QS : Σ∗ → {0, 1} with
access to the router’s internal state S. QS outputs 1 if cached
content C matches the input name. Otherwise, QS outputs 0.
After each invocation of QS , S transitions to S′ such that
S′(C) = S(C)+1 and, for all other C ′ 6= C, S′(C ′) = S(C ′).

4.2 Adversary Model
The goal of Adv is to learn information about content forwarded
by, and likely still cached in, R. Since CM is not secret, Adv
can use QS to learn private information. In particular, Adv can
test whether C was recently forwarded by querying QS(n), for
any n ∈ Σ∗.

In our model, Adv can be any ICN entity that requests
and receives content. Adv is not allowed to compromise any
honest (intended victim) consumers or R. Also, Adv cannot
eavesdrop on communication between R and honest consumers.

This restriction can be enforced in practice by using an encrypted
channel between each consumer and its closest router.

Note that this model does not assume knowledge of any
consumer adjacent to R. However, Adv’s success in learning
what content is cached in R can be used to help identify these
consumers.

4.3 Privacy Model
We now turn to privacy definitions. We take advantage of the
concept of (ε, δ)-probabilistic indistinguishability [17], [23] – a
standard notion to measure indistinguishability of two distribu-
tions in privacy-oriented applications.

Definition 4.1 ((ε, δ)-probabilistic indistinguishability). Two
distributions D1 and D2 are (ε, δ)-probabilistically indistin-
guishable, if we can divide the output space Ω = Range(D1)∪
Range(D2) into Ω1 and Ω2 such that:

• for all O ∈ Ω1, e−ε ≤ Pr(D1=O)
Pr(D2=O) ≤ e

ε

• Pr(D1 ∈ Ω2) + Pr(D2 ∈ Ω2) ≤ δ
Two distributions are “close” if both ε and δ are small.

This definition is stronger than the widely used statistical in-
distinguishability since it requires similar probabilities for each
output in Ω1. Ω2 contains all “bad” outputs with probabilities
in D1 and D2 that differ substantially; their ratios cannot be
bounded by eε or even e−ε. Intuitively, if D1 and D2 represent
output distributions of CM with two different states, then (ε, δ)
measures the information that CM leaks about those states. Any
output from Ω2 typically leaks “too much” information, e.g.,
occurrence of any O ∈ Ω2 such that Pr(QS1

(n) = O) > 0
and Pr(QS2

(n) = O) = 0, for the same name n and S1 6= S2,
may result in privacy breach in practice, as S1 and S2 become
distinguishable through CM in that case.

We now define perfect privacy with respect to forwarded
content. Informally, CM provides perfect privacy if the way it
responds to QS queries does not yield any information about the
content of R’s cache.

Definition 4.2 (Perfect privacy). For all names ` ∈ Σ∗, subset
of content M ⊂ Γ, and pairs of states S0, S1 such that
S0(x) = S1(x) for all x ∈ Γ \M and S0(y) 6= S1(y) for
all y ∈ M , QS0

(n) and QS1
(n) are (0, 0)-probabilistically

indistinguishable.

The above definition is strong since it implies that no in-
formation is revealed about any content previously forwarded
by R if CM offers perfect privacy. We believe that this level
of privacy may not be necessary in practice. For this reason,
we use the concept of content popularity to relax the above
definition. Specifically, there is no need to conceal the presence
of popular content objects (e.g., Google’s home page) in router
caches since Adv can safely assume that these objects are cached
without probing them. To this end, let k be the number of
requests after which a content is considered popular. We allow
the distributions of Q outputs under two states S0 and S1 to be
non-indistinguishable with some probability that depends on k.

Definition 4.3 ((k, ε, δ)-privacy). For all names n ∈ Σ∗, subset
of content M ⊂ Γ, and pairs of states S0, S1 such that S0(x) =
S1(x) for all x ∈ Γ \ M as well as S0(y) = 0 and 0 <
S1(y) ≤ k for all y ∈M (i.e., S0 and S1 only differ on content
objects in M); QS0

(n) and QS1
(n) are (ε, δ)-probabilistically

indistinguishable.

5 COUNTERMEASURES
One trivial and effective countermeasure to the attacks in Sec-
tion 3 is to simply disable router caching altogether. However,

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

6

this would immediately worsen the performance of content
distribution, one of the key features of ICN. In this section,
we present a series of countermeasures against cache timing
attacks. We discuss how ICN entities (particularly, routers)
need to act upon encountering private content to prevent such
attacks. We introduce techniques that inhibit Adv from extracting
meaningful information about private content from router caches.
These techniques provide various tradeoffs between privacy and
performance.

In designing countermeasures, we consider two types of
network traffic: interactive and content distribution. The first
represents synchronous communication between two or more
parties, e.g., voice/video conferencing and remote shell. This
type of traffic is characterized by low-latency and continuous
interaction, i.e., communicating parties continuously play the
roles of both producer and consumer. Conversely, multimedia
data delivery, live broadcasts, and delivery of web pages are
examples of content distribution traffic. Our rationale for distin-
guishing between these two traffic types is discussed below.

5.1 Interactive Traffic
While in-network caching mostly benefits content distribution,
it also helps mitigate packet loss in interactive communication
[37]. This is because interests re-issued for lost packets can
usually be satisfied by content cached closest to the location of
the actual loss, thereby reducing delay for re-requested content.
For this reason, any privacy-enhancing caching mechanism for
this class of traffic should not introduce additional delay.

At the same time, since interactive content tends to be time-
sensitive, there are hardly any benefits from caching it in routers
in the longer term. For instance, if several users take part in a
video-conference, cached stale video frames are of no use to any
of them after a short amount of time.

We choose to protect this class of traffic using unpredictable
names. Consumers and producers use a random value rand as
the last component of the name of each content they request and
serve, respectively. This requires some coordination between the
two (or more) parties involved in the interaction. Without loss of
generality, the parties need to agree on a shared secret for seeding
a pseudo-random function (e.g., a keyed cryptographic hash such
as HMAC [21]) used to generate content-name-specific suffix
rand .

We take advantage of our previous assumption that Adv can-
not eavesdrop on consumers or producers involved in interactive
communication or on traffic over R’s incident links (e.g., due
to link encryption or lack of physical access). Unpredictable
content names inhibit malicious probing of R’s cache. However,
NDN routers must not respond with content that include rand as
a name component to interests that do not explicitly express it.
For example, content named /alice/skype/0/rand should
not be returned to interests for /alice/skype/ even though
it would be a longest-prefix match. This is not an issue in
CCN since the architecture uses exact content name matching.
Moreover, in the event of packet loss, a consumer can re-issue an
interest and still benefit from obtaining requested content from
the router closest to the location of this loss.

5.2 Content Distribution Traffic
Unlike interactive traffic, content distribution does not require
any coordination between producers and consumers. Also, it ben-
efits a lot more from longer term router caching. Consequently,
an ideal privacy approach for content distribution traffic would
retain at least some benefits of caching beyond simple packet
loss recovery.

In this setting, neither the consumers nor the timings of
their requests are known in advance by the producer. Thus,

using unpredictable content names, which seems well-suited
for interactive traffic, is not viable for content distribution.
We assume that privacy-sensitive content is identified either by
interests carrying a single privacy bit or by the content itself
carrying a similar bit. For the purposes of this type of traffic, we
allow any combination of these markers.

Based on our discussion thus far, it appears that router
involvement in handling private traffic is unavoidable for con-
tent distribution. Since low latency is not usually a primary
requirement for this kind of traffic, routers can hide cache hits
by introducing artificial delays before responding with privacy-
sensitive cached content. Although this strategy increases end-to-
end latency, it retains one important benefit of caching: reducing
congestion and better bandwidth utilization. Moreover, if the
overall delay introduced by routers is close to the RTT between
Cr and P , the behavior of the network from Cr’s perspective
becomes similar to that of the current IP-based Internet.

We now need to consider which routers should introduce
artificial delays. Since the objective of this countermeasure is
to hide cache hits for privacy-sensitive content, it makes sense
that only caching routers should introduce artificial delays. An
interest might generate a cache hit in, at most, one router on
the path between the consumer and the producer. Therefore,
responding to interests should be delayed by, at most, one router
– the router which satisfies the interest from its cache.

5.3 Artificial Delay Properties
Suppose that we introduce a constant delay γ such that, in case
of a cache hit, R waits for γ before returning privacy-sensitive
content. This procedure is shown in Algorithm 1. In case of
a cache miss, the artificial delay at R must be the difference
between γ and the actual delay for R to receive the requested
content. Note that, in the latter case, the overall delay between
the interest and content arrival times would still be γ.

Algorithm 1: Privacy-Aware-Forwarding
1: Input: Interest for C, privacy bit b
2: if C /∈ CS then
3: Forward interest based on local forwarding strategy
4: else
5: if b = 1 then
6: Wait for some artificial delay based on C
7: Forward C to downstream interface

This approach is easy to implement and requires very lit-
tle additional per-cache-entry state. However, it has a major
drawback in that it either penalizes nearby content or sacrifices
privacy for far-away content. The former happens if γ is set
too high and content with nearby consumers (with respect to
R) becomes unduly delayed. The latter occurs when requested
content is far away (or routed via slow and/or congested links)
and the actual delay at R exceeds γ.

It is often impossible how to determine the optimal value of
γ that would avoid both problems. Therefore, we consider two
alternatives:
• Content-specific delay: For each privacy-sensitive content
C, R stores the original interest-in → content-out delay
γC . In other words, γC is the time it took R to obtain C,
from either its producer or some other router’s cache, the
first time. If an interest for it arrives whileC is inR’s cache,
R delays replying by γC .

• Dynamic delay: A router dynamically adjusts artificial de-
lay to mimic current behavior of in-network caching for
popular content. As the number of interests for a given
content grows, so does the likelihood of it being cached at

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

7

a nearby router. According to Definition 4.2, artificial delay
must not drop below actual delay for content located two
hops from Adv. We describe this type of delay in Section 8.

The former is obviously the safer choice for privacy even though
it imposes considerable delays for popular content that was
originally fetched from far-away producers or routers and then
cached at closer locations. Conversely, dynamic delay is more
responsive to ephemeral traffic patterns at the cost of requiring
routers to constantly monitor delay and popularity for all content.

Furthermore, for content to be perceived as satisfied by its
producer, all routers on the path should take cache privacy into
consideration. Consider the topology in Figure 6, which contains
two consumer Cr1 and Cr2, two routers R1 and R2, and
producer P . Assume that both routers start with empty caches
and C is a content object published by P . Also, assume that
both R1 and R2 spend the same amount of time forwarding an
interest or satisfying it from their cache. The average network
link RTTs are shown in Figure 6, where µi is the RTT of link i.8

Fig. 6. Artificial delay length

We have the following three cases:
1) Both routers introduce artificial delays when privacy-

sensitive content is requested, content is requested from
R1. If Cr1 requests C, the latter is cached at both R1
and R2, consequently. Moreover, both routers also store
the RTT to retrieve C from P . R2 stores µ4, and R1
stores (µ2 + µ4). If Adv requests C, R1 delays with the
already observed RTT = (µ2 + µ4). In other words, RTT
experienced by Adv would be (µ1 + µ2 + µ4), which is
the RTT to fetch C from P . Therefore, Adv is unable to
determine if C has been previously requested.

2) Both routers introduce artificial delays when privacy-
sensitive content is requested, and content is requested
from both R1 and R2. If Cr2 requests C, R2 gets its
retrieval RTT as µ4. When Cr1 requests C, R2 adds an
artificial delay of µ4 before responding from its cache.
This causes R1 to store C’s retrieval RTT as (µ2 + µ4)
when caching C. If Adv requests C, R1 delays (µ2 + µ4)
causing Adv to experience RTT of (µ1+µ2+µ4), which is
also RTT to fetch C from P . Therefore, as in the previous
case, Adv is unable to determine if C has been previously
requested.

3) Only R1 is concerned about cache privacy, i.e., R2 does
not introduce any artificial delay when cache hits occur.
If Cr2 requests C then this content gets cached in R2. If
Cr1 requests C , R1 caches it and stores its retrieval RTT =
µ2.R1 does not know that the request is satisfied fromR2’s
cache. Therefore, if Adv requests C, it experiences RTT
= (µ1 + µ2) due to the artificial delay introduced by R1.
This is different from the delay associated with retrieving
C from P , and therefore Adv concludes that C has been
requested before.

We thus conclude that if a router caches content then it should
also introduce artificial delays. This requirement is stronger for

8. The links Cr1–R1 and Adv–R1 can have different RTT values. We
chose to use the same one for demonstration simplicity.

edge routers and can be relaxed in the core due to their vastly
larger anonymity sets.

5.4 Exceptions to Artificial Delay
We now consider how a router should handle all possible com-
binations of consumer- and producer-driven content marking. As
mentioned above, if C is marked as private by its producer or
any consumer, this must be always honored by routers as long as
C is cached. However, this rule has exceptions, especially when
specific content is consecutively requested as private and non-
private by different (or even the same) consumers while cached
by R. To demonstrate this, we use the topology in Figure 6 and
assume that both routers are privacy-aware and start with empty
caches.

If Cr1 requests C for the first time with the interest privacy
bit set, the content will be delivered from P and cached by R1.
Cr1 experiences (µ1+µ2+µ4) RTT delay. If Adv then requests
C twice as non-private, it experiences the same (artificial) RTT
delay of (µ1 + µ2 + µ4) in both requests. This reveals the fact
that a consumer previously requested C as private: if Adv was
the only consumer to request C, the second request would have
been satisfied with delay 2× µ1 due to R1’s cache.

If Adv requests C as non-private, it is served by P and
cached in R1. First, after Adv’s request, Cr1 requests the
same content as private, triggering R1 to treat it as such in
all subsequent requests. Also, stored delay will be (µ2 + µ4)
since that was the value recorded by R1 when C was originally
requested by Adv. Then, Adv requests C again as non-private.
Adv sees an RTT delay of (µ1 +µ2 +µ4). However, since Adv
triggered caching C in its first request, this RTT delay is longer
than expected. This again reveals that a consumer might have
requested C as private in between two requests by Adv.

Although the previous two scenarios leak private informa-
tion, Adv does not know whether privacy-sensitive content has
actually been requested. This is because caching only happens
for a limited time. In either scenario, Adv’s second interest for
C might have actually been satisfied by the producer because
C was evicted from R1’s cache. However, with some additional
information aboutR1’s traffic, i.e., knowledge about caching and
eviction patterns at R1, Adv can increase its success probability.

One way to address this information leakage problem is as
follows: once an interest for C is marked as non-private, the
content must be treated as non-private as long as it remains in
a router’s cache. We attempt to formally summarize the rules of
router behavior when processing content requests.

1) Once a content is requested or served as non-private, it
should always be treated as such as long as it is cached.

2) The effect of changing the privacy bit (or any other
method of specifying content privacy) via an interest
should always take effect after the interest is satisfied.
Specifically, an artificial delay should not be used in
response to the interest that sets the privacy bit. This delay
should only be applied to all subsequent interests for the
same content. This includes interests that are aggregated
in the PIT with one which has the privacy bit set.

As mentioned in Section 7, requesting content as private
encourages consumer selfishness. The general outcome would
be detrimental for all consumers, who would experience high
latency even when the requested content is cached. However, we
claim that consumers have at least one incentive for requesting
content without privacy: reduced delay for re-transmitted inter-
ests in case of packet loss.9 Requesting content with privacy
delays its re-transmission from router caches (if the original

9. Packet loss rate in today’s Internet hovers around 4% [5].

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

8

content object is lost) and hence results in higher delays. Thus,
we believe that the rational choice for consumers is to request
content with privacy only when actually needed.

6 HANDLING DISTRIBUTED ADVERSARIES

Techniques presented in Section 5 enable perfect-privacy in
the presence of local adversaries. However, if the adversary is
distributed and connected to multiple upstream routers, artificial
delay introduced by the first-hop forwarder can be easily by-
passed. This type of attack and its mitigation are addressed in
this section.

6.1 Distributed Timing Attack
Consider the topology in Figure 6. In this scenario, Adv can
retrieve content from both R1 and R2. We also assume that
both routers honor private content requests and start with empty
caches. The following attack shows how Adv can exploit access
to R1 and R2 to circumvent the artificial delay countermeasure
proposed above.

1) Cr1 asks for C as private.
2) Adv asks for C first from R1 and then from R2 as non-

private.
The delay for Cr1’s interest is (µ1 + µ2 + µ4). The RTTs for
Adv’s interests are (µ1+µ2+µ4) and 2×(µ3+µ4), respectively.
The latter is because Cr1’s interest marked the content as private
in R2’s cache. If Cr1 did not ask for this content, then the RTTs
for both of Adv’s interests would be (µ1 + µ2 + µ4) and µ3.
Since neither Adv interest is private, the content is cached in both
routers (as a consequence of Adv’s first request) as non-private.

This attack works because R1 and R2 do not share content-
specific privacy status bits. In other words, regardless of C’s
privacy status in R1’s cache, R2 makes a local decision when
receiving requests for C .

6.2 Mitigating Distributed Adversaries
We propose a simple technique to deal with this type of attack.
Whenever a router makes a privacy status change for any
cached content, it notifies the upstream router through which
that content was received. We do not mandate a specific form
of notification, as long as it contains the name of the content
in question and some form of authentication. Each router treats
these notifications as a request to change the local privacy status
of the content in question, if it is still cached. The routers then
forward the notification to their upstream peers. These steps are
followed by routers along the path to the producer, until either
the producer is reached, or a router which does not have the
content in its cache is encountered. We expect that notifications
would not travel far, because in practice most of the caching will
likely occur at the edge of a network [13].

We illustrate how the proposed technique work using the
example of distributed attack example described above. Assume
that Cr1 performs step (1) to obtain C from R1 privately. If R1
notifies R2 about its privacy status change for C before replying
to Adv, R2 marks its cached copy of C as non-private. Observed
RTTs from Adv’s interests are 2× (µ1 + µ2 + µ4) and 2× µ3,
the same as if Cr1 did not ask for C. Therefore, Adv cannot use
these RTTs to determine whether Cr1 asked for C.

The rationale behind this approach is as follows. Artificial
delay works to prevent timing attacks because it hides the
presence of cache content. If R1 did not have a cache, Adv’s
first interest would be forwarded to R2. In this case, Adv’s
timing attack would be is unsuccessful. Thus, the notification
supplements artificial delay to emulate this scenario.

Also, using notifications and artificial delay is much more
efficient than forwarding interests without delays, because no-
tifications (as described) only carry a content name and do not
expect a subsequent content response.

7 WHICH CONTENT IS PRIVATE?
When a content object is marked or requested as private,
the network should provide (at least) (k, ε, δ)-privacy based
on Definition 4.3. However, since not all content is private,
the question remains: how does the network determine which
content is private? Unfortunately, there is no universal policy.
All three ICN entities (consumers, routers, and producers) must
individually or collectively participate in this decision. In the
rest of this section we present advantages and drawbacks of
individual privacy decisions, along with the involvement level
of each entity. We then discuss privacy decision techniques that
require the collaboration of several network entities.

7.1 Router-Driven
Since cache management is part of a normal router’s standard
operating procedure, it might seem obvious that this router
involvement in protecting cache privacy is required. However, as
we show below, it is possible to achieve privacy without network
(router) awareness. Routers solely deciding what content is pri-
vate is problematic. This is because they do not have the means to
differentiate between requested content. Any attempt in doing so
increases overhead and negatively impacts on network through-
put. Because routers cannot attempt to differentiate between
requested content, achieving cache privacy requires treating all
content as private, hence providing unnecessary perfect privacy
as per Definition 4.2. This adds complexity and overhead to
router operations, thus inhibiting efficient content distribution.

7.2 Consumer-Driven
In this case, consumers are responsible for specifying what
content is private. When consumers connect to the network, they
can specify whether their traffic should be treated as private.
Both consumer and router involvement is required since the latter
performs all cache management operations.

Communicating what content is private between consumers
and routers can be done using one (or both) of the following
methods:

1) Interest messages can carry a NO-Cache flag. When set,
routers do not cache corresponding content objects. This
clearly protect consumers privacy.

2) Interest messages can carry a Privacy bit. When set,
corresponding content objects are marked accordingly and
treated as private when cached by routers. The producer
may or may not honor this Privacy bit.

The advantages of consumer-driven privacy decisions are: (1)
finer granularity than routers treating all (or per-consumer) traffic
as private, and (2) consumers know in advance whether requested
content is private. However, this technique also suffers from the
selfish consumer phenomena, e.g., consumers might always set
Privacy bit in all interests.

7.3 Producer-Driven
In this case, producers specify which content is private. This
approach requires producer and router involvement. Communi-
cating content privacy to the network can be done using one
of the methods mentioned above, i.e., content object header can
include either a NO-Cache flag or a Privacy bit. A drawback
of this technique is that consumers do not know in advance
whether requested content will be treated as private.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

9

One difference between producer-driven and consumer-
driven methods is that the former does not suffer from the
“selfish producer” phenomena. Selfish behavior by producers
is nonsensical since it defeats producers objective of efficient
content delivery.

7.4 Collaborative Privacy Decisions
It is possible for both consumers and producers to determine the
privacy level of a certain content. In fact, the consumer might
set the Privacy bit in an interest and the producer does not set
this bit in the corresponding content C. All routers caching this
content should respect the Privacy bit, i.e., C is considered
private if it is either requested or served as such.

Another alternative is to use unpredictable (secret) names
for content. In other words, if C is private, both consumers and
producers refer to it by a name that contains a random and a hard-
to-guess component, ideally derived from some shared secret.
One disadvantage of this approach is that both parties need to
be involved and a priori agree on the random name component.
On the other hand, an important advantage of this approach is
its opaqueness since routers need not be involved. As discussed
earlier, this approach is useful, and in fact recommended, for
interactive traffic.

8 IMPROVED PRIVACY-UTILITY TRADE-OFF

So far we considered techniques where cache hits for private
content are always delayed. Proposed techniques are secure
according to Definition 4.2, i.e., perfectly private, for all privacy-
sensitive content. This is a strong security notion which may not
be required in practice. We believe that there are factors, such as
content popularity, that allow us to avoid hiding cache hits for
private content without significantly compromising privacy. In
this section, we discuss and analyze more practical techniques
that relax the perfect privacy requirement in favor of better
performance, i.e., higher utility. In general, such techniques
randomly decide whether to mimic a cache hit or a cache miss for
each content request. The distribution of observed output reflects
the (local) popularity of requested content.

8.1 A Non-Private Naı̈ve Approach
Let ρC denote the number of requests for particular content C.
The algorithm always generates a cache miss, iff ρC ≤ k, where
k denotes the size of the anonymity set. A cache hit indicates
that at least k requests have been generated for C.

This approach has a drawback of Adv being able to de-
termine whether C was previously requested. To do so, Adv
(knowing k) issues requests for C until it determines that the
content is coming from R’s cache. Let ρ′C be the number of such
requests. If ρ′C > 0, Adv learns that exactly k−ρ′C requests have
been issued for C.

8.2 Random-Cache
Security of the previous scheme depends on Adv’s knowledge of
k. Our next scheme – Random-Cache – selects a random k for
each content. Thus, the index of the first cache hit in the output
sequence is random, and should not leak information about the
router’s cache.

As shown in Algorithm 2, the scheme works as follows: the
router maintains a counter ρC for each C. The first request for
C is always a cache miss, and ρC is initialized to 0. Also, kC
is picked randomly from [0,K) according to a distribution of
domain [0,K), described by a random variable K. Upon receipt
of a new request for C, the router increments ρC and checks

Algorithm 2: Random-Caching
1: Input: Request for content C, Domain size K, Distribution of

K
2: Output: Cache hit or cache miss
3: T := set of received content
4: if C /∈ T then
5: Select kC from [0,K) with probability Pr(K = kC)
6: T := T ∪ {C}
7: ρC := 0
8: Output cache miss
9: else

10: ρC := ρC + 1
11: if ρC ≤ kC then
12: Output cache miss
13: else
14: Output cache hit

whether ρC ≤ kC . If so, it generates a cache miss, and a cache
hit otherwise.

We define utility as the ratio of expected number of cache
hits and the total number of requests for a given content, i.e., it
represents the fraction of interests satisfied from the cache.

Definition 8.1 (Utility). Let H(ρ) denote the random variable
describing the distribution of the number of cache hits depending
on the total number of requests ρ (ρ ≥ 1). The utility function
u : N → R+ of a cache management scheme is defined as:
u(ρ) = 1

ρE(H(ρ)).

In practice, we derive u using the average number of cache
misses, instead of cache hits, which is easier to compute. Let
M(ρ) denote the random variable describing the distribution
of the number of cache misses, based on the total number of
requests ρ (ρ ≥ 1). Then, M(ρ) + H(ρ) = c, and u(ρ) =
1− 1

ρE(M(ρ)).
Specifically, for Random-Cache, we have:

E(M(ρ)) =

ρ∑
i=1

i · Pr(K = i− 1) +
K∑

i=ρ+1

ρ · Pr(K = i− 1),

if 1 ≤ ρ < K (1)

K influences both privacy and utility. If cache misses occur
with overwhelming probability, then we obtain (almost) perfect
privacy with nearly no utility.

Uniform-Random-Cache If K is uniform, then we obtain the
best privacy among all distributions in terms of ε (which is 0).
Also, as shown below, we can decrease δ (and improve privacy)
by increasing K at the cost of degrading utility. We refer to this
instantiation of Random-Cache as Uniform-Random-Cache.

Formally, let U(0,K) denote a discrete uniform random
variable, i.e., Pr(U(0,K) = r) = 1/K, 0 ≤ r < K. Uniform-
Random-Cache is an instantiation of Random-Cache (Algorithm
2) with K = U(0,K).

Theorem 8.1 (Privacy). If all cached content is statistically
independent, Uniform-Random-Cache is (k, 0, 2kK)-private.

Proof. Slightly abusing the notation, let Q0(C, r) and Q1(C, r)
denote the output of Algorithm 2 in states S0 and S1, respec-
tively, with C when kC = r. (Recall that S0(C) = 0 and
S1(C) = x, where 1 ≤ x ≤ k). In addition, Qt0(C, r) and
Qt1(C, r) denote the sequence of outputs obtained by executing
Algorithm 2 with C consecutively t times, in states S0 and S1,
respectively. Since all content is statistically independent: (1)
it does not matter whether S0 and S1 differ in more than one

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

10

content’s count, and (2) Adv’s best strategy is to request the same
content multiple times in order to infer information about router
state. Let Qt0 and Qt1 denote two random variables describing
Qt0(C, r) and Qt1(C, r) when r is selected uniformly at random
according to Line 5 of Algorithm 2.

We show that, for all content C, Qt0 and Qt1 are (0, 2xK)-
probabilistically indistinguishable. This implies that Uniform-
Random-Cache is also (0, 2xK)–probabilistically indistinguish-
able with any C, assuming all content is statistically indepen-
dent.

The output of Qt0 and Qt1 is a sequence with length t
consisting of two sub-sequences; the prefix, which is composed
of consecutive cache misses (i.e., sequence of 0’s), and the suffix
with consecutive cache hits (i.e., a sequence of 1’s).

We partition output space Ω = Range(Qt0) ∪ Range(Qt1)
into Ω1, Ω2 and Ω3, for all t and C, as follows:
• Ω1 = Range(Qt1)\Range(Qt0): If r ∈ [0, x), then all the
t replies are cache hits in state S1. However, this output can
not appear with S0 where the very first answer is always
a cache miss (the router first needs to retrieve the content).
Thus, @r′ such that Qt1(C, r) = Qt0(C, r′).

• Ω2 = Range(Qt0) ∩Range(Qt1): If r ∈ [x,K − x), then
Qt1(C, r) = Qt0(C, r − x).

• Ω3 = Range(Qt0) \ Range(Qt1): If r ∈ [K − x,K),
then the output with S0 contains at least K − x+ 1 cache
misses, which is not possible with S1. Hence, @r′ such that
Qt0(C, r) = Qt1(C, r′).

For output O ∈ Ω, let prefix (O) denote prefix length of O (i.e.,
cache misses in O). Since kC is selected uniformly at random,
for all O ∈ Ω2, Pr(Qt0 = O) = Pr(kC = prefix (O) − 1) =
Pr(kC = prefix (O) + x− 1) = Pr(Qt1 = O). Hence, ε = 0.
Moreover, if O ∈ Ω1∪Ω3, Pr(Qt0 = O)+Pr(Qt1 = O) = 1

K .
Since |Ω1 ∪ Ω3| = 2x, we obtain δ = Pr(Qt0 ∈ Ω1 ∪ Ω3) +
Pr(Qt1 ∈ Ω1 ∪ Ω3) = 2x

K ≤
2k
K .

This theorem states that the probability that Adv can deter-
mine whether a content has been requested zero or k times is
2k/K. This is because observing any outcome (hit/miss) which
can occur in state S0, but not in S1, (or vice-versa) occurs with
probability 2x/K . The analysis also shows that perfect privacy
can not be achieved if a cache hit can be generated, with non-zero
probability.

Theorem 8.2 (Utility). For Uniform-Random-Cache, u(ρ) =
1− 1

ρE(M(ρ)), where

E(M(ρ)) = ρ

(
1− ρ− 1

2K

)
, if 1 ≤ ρ < K

Proof. The theorem follows from Equation 1. If 1 ≤ ρ < K ,
we have:

E(M(ρ)) =

ρ∑
i=1

i · Pr(K = i− 1) +
K∑

i=ρ+1

ρ · Pr(K = i− 1)

=

ρ∑
i=1

i · 1

K
+

K∑
i=ρ+1

ρ · 1

K

=

(
ρ(ρ+ 1)

2

)(
1

K

)
+ (K − ρ)

(
ρ · 1

K

)
=

(
ρ(ρ+ 1)

2K

)
+ ρ−

(
ρ2

K

)
= ρ+

ρ2 + ρ

2K
− 2ρ2

2K

= ρ− ρ2 − ρ
2K

= ρ

(
1− ρ− 1

2K

)

Theorems 8.1 and 8.2 show that, by increasing the size of
domain K, resulting privacy increases at the cost of degraded
utility.

Exponential-Random-Cache. One drawback of uniform dis-
tribution is that having only one parameter (K) gives limited
flexibility for adjusting the privacy/utility trade-off. Hence, we
also consider truncated geometric distribution as a candidate for
K. The shape of this truncated geometric distribution can be
calibrated through an extra parameter other than K. Assigning
exponentially larger probability to small values of kC results
in fewer cache misses on average, at the cost of additional
privacy loss (ε will increase). The corresponding scheme is
called Exponential-Random-Cache.

Consider a random variable G(α) with geometric distribu-
tion, i.e., Pr(G(α) = k) = (1 − α) · αk, where k ≥ 0
and 0 < α ≤ 1. Its truncated counterpart denoted by
G̃(α, x1, x2) has a conditional probability distribution defined
as: P (G̃(α, x1, x2) = k) = Pr(G(α)=k)∑x2

i=x1
Pr(G(α)=i) if x1 ≤ k ≤ x2

and 0 otherwise, where [x1, x2] is the truncation interval
(x1, x2 ∈ N0). Therefore:

Pr(G̃(α, 0,K) = r) =
(1− α) · αr

1− αK+1
(2)

Exponential-Random-Cache is an instantiation of Random-
Cache (Algorithm 2) with K = G̃(α, 0,K − 1). Here, α and
K are input parameters of the algorithm that can be calibrated
to achieve the desired privacy/utility trade-off:

Theorem 8.3 (Privacy). If all cached content is
statistically independent, Exponential-Random-Cache is
(k,−k ln(α), 1−α

k+αK−k−αK
1−αK)-private

Proof. The proof is similar to that of Theorem 8.1. We assume
the same annotations and show that, for all content C, Qt0 and
Qt1 are (−k ln(α), 1−α

k+αK−k−αK
1−αK)-probabilistically indistin-

guishable
We identically partition Ω into Ω1, Ω2, Ω3 similar to Theo-

rem 8.1. If O ∈ Ω2,

Pr(Qt0 = O)

Pr(Qt1 = O)
=

Pr(kC = prefix (O)− 1)

Pr(kC = prefix (O) + x− 1)

=
Pr(G̃(α, 0,K − 1) = prefix (O)− 1)

Pr(G̃(α, 0,K − 1) = prefix (O) + x− 1)

=

(1−α)·α(prefix(O)−1)

1−αK
(1−α)·α(prefix(O)+x−1)

1−αK

=
α(prefix(O)−1)

α(prefix(O)+x−1)

= α−x

Similarly, Pr(Qt1=O)
Pr(Qt0=O)

= αx. Since α < 1, we have
ε ≤ lnα−k = −k ln(α). In addition, Pr(Qt1 ∈ Ω1) =∑x
i=1

(1−α)αi−1

1−αK = 1−αx
1−αK , and Pr(Qt0 ∈ Ω3) =∑K

i=K−x+1
(1−α)αi−1

1−αK = αK−x−αK
1−αK . Since Pr(Qt0 ∈ Ω1) =

Pr(Qt1 ∈ Ω3) = 0, we get Pr(Qt0 ∈ Ω1 ∪ Ω3) + Pr(Qt1 ∈
Ω1 ∪ Ω3) ≤ 1−αk+αK−k−αK

1−αK .

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

11

Theorem 8.4 (Utility). For Exponential-Random-Cache,
u(ρ) = 1− 1

ρE(M(ρ)), where

E(M(ρ)) =
1− αρ − ραK

1− αK
+

α(1− αρ)
(1− αK)(1− α)

,

if 1 ≤ ρ < K

Proof. Using the fact that
∑ρ
i=1 iα

i−1 = d
dα

∑ρ
i=1 α

i =
1−(ρ+1)αρ

1−α +α(1−αρ)
(1−α)2 and

∑K
i=ρ+1 α

i−1 = αρ−αK
1−α the theorem

follows from Equation 1. If 1 ≤ ρ < K , and using the
conditional probability in Equation 2, we have:

E(M(ρ)) =

ρ∑
i=1

i · Pr(K = i− 1) +
K∑

i=ρ+1

ρ · Pr(K = i− 1)

=

ρ∑
i=1

i · (1− α) · αi−1

1− αK
+

K∑
i=ρ+1

ρ · (1− α) · αi−1

1− αK

=
1− α

1− αK
·
ρ∑
i=1

iαi−1 +
ρ(1− α)

1− αK
·

K∑
i=ρ+1

αi−1

=

[
1− α

1− αK
·
(

1− (ρ+ 1)αρ

1− α
+
α(1− αρ)
(1− α)2

)]
+

[
ρ(1− α)

1− αK
·
(
αρ − αK

1− α

)]
=

1− (ρ+ 1)αρ

1− αK
+

α(1− αρ)
(1− αK)(1− α)

+
ρ(αρ − αK)

1− αK

=
1− αρ − ραK

1− αK
+

α(1− αρ)
(1− αK)(1− α)

8.3 Comparison of Proposed Schemes
Increasing α in the Exponential-Random-Cache scheme results
in better privacy (smaller ε). However, δ can not be made arbi-
trarily small and it is ultimately determined by α. In particular,
δ = 1 − αk when K = ∞, which is the smallest possible
δ. In contrast, δ of the uniform distribution can be arbitrarily
decreased by sufficiently increasing K.

We compare the utility of proposed schemes in Figure 7.
In Figure 7(a), we adjust the same value of δ, that is 0.05,
for both schemes, and plot their utility for different values of
k while varying ε. In Figure 7(b), we compute the maximum
value of ε = − ln(1 − δ) for various combinations of δ and k,
and plot the difference between the utility functions of the two
schemes for varying δ. Both figures show that the exponential
scheme exhibits up to 12% performance gain over the uniform
one. Figure 7(a) also shows that both schemes achieve better
utility as the number of requests grows.

8.4 Addressing Content Correlation
Random-Cache requires statistically independent content in the
cache, which is a very strong assumption. Multiple content
objects may share the same name prefix, and their access patterns
could be strongly correlated. Under this assumption, Random-
Cache as described above becomes insecure since it allows Adv
to sample multiple points under different k. By requesting a large
number of related content objects, as soon as Adv receives one
without any delay, it learns that, with overwhelming probability,
the whole set of content has been requested before.

To alleviate this problem, correlated content must be grouped
together. Algorithm 2 can then be applied to these groups rather
than to individual content, i.e., using a single counter ρC and
value of kC . Even the above extension can not be proven secure
against all correlation-based attacks. In many cases, content
correlation is even more subtle (e.g., semantically related content
having different names such as linked webpages). This might be
identified with appropriate background knowledge. As a possible
countermeasure, content could be augmented with a content
ID field. Producers would populate such field with identical
values for correlated content. Routers could then determine
how to handle such content by observing this field. However,
a thorough analysis of these attacks and of the corresponding
countermeasures is beyond the scope of this dissertation.

9 EXPERIMENTAL EVALUATION
We now evaluate the actual impact of cache privacy techniques
through simulations. We do not include the method that involves
notification messages, since we believe caching will most likely
take place at the edge [13]. Thus, notification messages will
traverse only a few hops before being dropped.

We experiment using HTTP traffic traces collected by IR-
Cache [18], which is part of the National Laboratory for Ad-
vanced Network Research (NLANR) project [29].10 Traces were
collected on September 1, 2007 (over a 24-hour period), on a
Web proxy located at Research Triangle Park, North Carolina.
These traces reflect activity of 185 users, for approximately
3.2 million requests distributed over various destinations. We
randomly divide these requests into two sets: private and non-
private. Then, we “replay” them with the following algorithms:

1) No Privacy. Routers use no privacy-preserving techniques.
2) Always Delay Private Content. For each request of a

(cached) private content, the router always generates a
cache miss, while for non-private cached content the re-
sponse is always cache hit. This implements the basic
protocol in Section 5.2.

3) Uniform-Random-Cache/Exponential-Random-Cache.
Requests for cached private content are handled according
to Algorithm 2. Requests for non-private cached content
always result in a cache hit.

A router caches all content and removes elements from its
cache according to the LRU policy. In case of a cache hit, the
corresponding cache entry becomes “fresh” even if the response
is delayed.

For algorithms that classify content into private and non-
private, each incoming request is randomly marked as private
with probabilities 0.05, 0.1, 0.2, and 0.4. Without loss of gener-
ality, we assume that all content is of the same size. We consider
caches of size: 2,000, 4,000, 8,000, 16,000, and 32,000 units
(content objects). Furthermore, as a baseline, we also run the
same algorithms with the cache of infinite size.

We set k = 5 and ε = 0.005. Results are plotted in Figure 8.
Random caching algorithms have little impact on the percentage
of cache hit rates. There is, at most, a 5% decrease in hit
percentages for nearly all observed cache sizes. Increasing the
amount of private interests also had little effect on the cache hit
percentage. There is, at most, a 10% drop in the hit percentage
as the percentage of private interests increased from 5% to 40%.

10 BYPASSING CACHE DELAYS
Thus far, our goal was to achieve perfect privacy, which we
attained by introducing artificial delays in routers when cache

10. This was chosen since we believe it accurately reflects traffic that
would be similar to NDN traffic. As of writing, there is no publicly available
NDN traffic data set.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

12

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
k = 1

Number of Requests (c)
U

ti
lit

y
 (

u
)

Uniform

ε = 0.04 (Expo)

ε = 0.03 (Expo)

ε = 0.05 (Expo)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
k = 5

Number of Requests (c)

U
ti
lit

y
 (

u
)

Uniform

ε = 0.04 (Expo)

ε = 0.03 (Expo)

ε = 0.05 (Expo)

(a) Utility depending on privacy (δ = 0.05)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
k = 1

Number of Requests (c)

U
ti
lit

y
 D

if
fe

re
n

c
e

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
k = 5

Number of Requests (c)
U

ti
lit

y
 D

if
fe

re
n

c
e

δ = 0.05

δ = 0.03

δ = 0.01

(b) Maximal utility difference between Uniform-Random-Cache and Exponential-Random-Cache when ε =
− ln(1− δ)

Fig. 7. Uniform-Random-Cache vs. Exponential-Random-Cache

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a

c
h

e
 H

it
s
 R

a
te

 (
%

)

No Privacy

Exponential−Random−Cache

Uniform−Random−Cache

Always Delay Private Content

(a) Comparison of our techniques

2000 4000 8000 16000 32000 Inf
10

15

20

25

30

35

40

45

50

Cache Size

C
a

c
h

e
 H

it
s
 R

a
te

 (
%

)

5% Private

10% Private

20% Private

40% Private

(b) Exponential-Random-Cache varying number of pri-
vate requests

Fig. 8. Cache Hit Rates: Experimental Results

hits occur. We also described how to improve upon this deter-
ministic delay with randomized delay algorithms. However, such
strategies are problematic in certain scenarios:

1) If a consumer needs to resend an interest marked as private
due to packet loss or transmission errors, the upstream
router delays responding.

2) If a consumer is co-located with other trusted consumers
then there is no reason the latter should be penalized by
artificial delays if all parties request the same content. This
is particularly true for the local application topology in
Figure 4, where different applications running on the same
consumer device may inherently trust one another since
their common owner trusts all applications. In this scenario,
if two applications request the same content through the
local router, neither should be subjected to artificial delay.

In this section, we modify prior countermeasures so as to allow
consumers to bypass the artificial delay. Our approach is based

on the stateful techniques introduced in [24], [25]. It does not
require any trust relationship between consumers and routers.
The basic idea is that each consumer creates a special cache-
bypass token y = H(x) which is enclosed with each interest,
where H is a cryptographic hash function and x is a random
256-bit string generated and stored for each request. The token
is placed into a special per-hop header field called Token. When
R receives an interest Int forC on interface F with a non-empty
Token field, it performs the following steps:

1) If C is not cached locally, R forwards Int upstream
according to its local forwarding strategy and stores Token
in the PIT.

2) When C is returned, R stores the value of Token and F in
the cache alongside C and its RTT.

If a consumer wishes to bypass the artificial delay for C , it must
present the token pre-image x in an interest. The pre-image is
also included in the Token field. Upon receipt of such an interest

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

13

from the same interface F , R performs the following steps:
1) R computes y′ = H(x).
2) If y′ = y, R responds with C with no delays. Otherwise, R

behaves according to the random cache algorithm described
above.

This method does not introduce per-user state and requires no
trust relationship between consumers and routers. However, one
drawback is that routers are now required to store an additional
256-bit value for every cached content and perform one hash
computation per interest.

The use of the bypass token is limited to consumers con-
nected to the same local network (including different applica-
tions on the same device). The token can be exchanged between
neighboring consumers using ARP-like request and response
queries [31]. This, however, implies that Adv must not be able to
eavesdrop on these messages, which complies with the adversary
model in Section 4. However, Adv connecting to an encrypted
network, e.g., in coffee shops with protected public access points,
can still eavesdrop on all packets. In this case, there is no need
for routers to obscure cache hits from cache misses since Adv
learns what is requested by eavesdropping.

11 RELATED WORK

Cache privacy in ICN, with NDN as a concrete example, was
first studied in our work in [3] – the basis of the current paper.
Mohaisen et al. [24], [25] study cache privacy in ICN (NDN) and
propose countermeasures similar to ours. One primary difference
is that their delay computation always samples from a normal
distribution with parameters that change over time. In contrast,
our work explores static uniform and exponential random delays.
Moreover, Mohaisen et al. only consider privacy-preserving
delays at edge routers. Proposed methods require keeping per-
user state in routers in order to enable fast re-transmission of
replies without artificial delays. In contrast, privacy information
in our approach is distilled in a single bit and timestamp per
content (and request). In our stateful variant described in Section
10, the state can service many consumers in the same subnet and
thus has more value per bit. Also, [24], [25] does not consider
distributed adversaries described in Section 6.

Outside of ICN, there is a large body of work on using
side channels to extract information about other users’ (or
applications’) behavior. Techniques proposed in [12], [16] allow
malicious websites to learn whether a user visited a specific web
page. The attacker sends a Java applet to the victim and detects
cache hits with respect to the user’s browsing cache.

Similarly, Felten et al. [11] show how a malicious website
can determine whether a web page has been downloaded by
its victim. The attack uses a Java applet or Javascript code and
timing information to determine the content of the browser’s
cache.

Baron [4] proposes a countermeasure for attacks in [12], [16],
based on completely hiding one’s browsing history: rendering
behavior of the browser (e.g., link colors, output of CSS func-
tions) with respect to previously visited web pages is identical to
that with new pages. However, this technique does not work for
interactive attacks. In particular, Weinberg et al. [35] conducted
experiments to show that interactive and timing attacks can still
be used to disclose user’s previous visited sites.

Bortz et al. [6] show two types of timing attacks that allow
the adversary to learn the content of the browser’s cache. The
first, called direct timing attack, reveals whether one or more
public websites have been visited by the victim. The second,
cross-site timing attack, is more dangerous as it can reveal
information about private sections of websites. For instance, it
can determine whether a user is logged in to a specific service.

Another side-channel exploit is the timing attack on SIP VoIP
networks. A tool described in [36] can be used to reveal the
“calling history” of a SIP domain by observing which “recipient
digital certificates” are stored in the local cache.

Several countermeasures to cache attacks have been devel-
oped. [20] proposes a server-side approach that prevents users
from leaking the content of their cache. The idea is to randomize
and personalize the links in web pages. Thus, a malicious site
can not guess them when it tries to discover whether they have
been visited.

Schinzel [32] discusses three techniques for mitigating
timing-based side channel attacks in web applications. The first
delays all responses such that the total delay of each response is
identical. While this does not leak any information, it introduces
considerable delay and affects user experience. The second
approach entails adding a random delay to each response (the
responses to identical requests are independently randomized).
However, by requesting the same content sufficiently many
times, the adversary can remove this random noise. The third
approach is similar to the second. However, instead of random-
izing the delay per response, a single random delay is selected
per destination in order to prevent the aforementioned attack.

Timing and traffic analysis attacks have been extensively
studied in the context of anonymity and mix networks such
as Tor [26], [15], [33]. These attacks often attempt to reveal
what particular servers or resources a client (consumer) requests.
However, the mechanisms by which this is done is vastly
different than which is proposed here. While our attacks (and
countermeasures) depend solely on in-network caching, the Tor-
related attacks rely on other anomalies such as producer delays,
network delays due to Tor, etc.

Lauinger [22] considers several NDN-related security issues,
identifies the problem of cache privacy and overviews several
countermeasures, including some approaches similar to those in
this paper. Crosby et al. [9] investigate how network latency
deteriorates due to time-based side channel attacks, and design
filters to reduce the effects of jitter.

12 CONCLUSION

This paper explored cache privacy in ICN (and CCN) and identi-
fied several important privacy threats. We then introduced some
plausible and effective counter-measures. First, we suggested
that consumers and producers should indicate which content
is privacy-sensitive. Then, we proposed several techniques that
provide certain tradeoffs between privacy and latency. These
techniques were assessed with respect to local and distributed
adversaries. We also introduced a formal model that allows us
to quantify the degree of privacy offered by various caching
algorithms. We believe that proposed techniques are general and
may be of interest beyond caching. Items of future work include
analyzing analyzing the depth of edge routers which must intro-
duce content-specific artificial delays as well as techniques for
consumers and producers to link distinct private content together
to prevent correlation attacks.

REFERENCES
[1] CCNx 1.0 protocol specications roadmap. http://www.ietf.org/

mail-archive/web/icnrg/current/pdfZyEQRE5tFS.pdf.
[2] Interest packet. http://named-data.net/doc/NDN-TLV/0.1/interest.html.
[3] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik. Cache privacy in

named-data networking. In Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on, pages 41–51. IEEE,
2013.

[4] L. Baron. Preventing attacks on a users history through css: Visited
selectors. http://dbaron.org/mozilla/visited-privacy, 2010.

[5] R. Birke, M. Mellia, M. Petracca, and D. Ross. Experiences of voip
traffic monitoring in a commercial isp. IJNM, 20(5), 2010.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2679711, IEEE
Transactions on Dependable and Secure Computing

14

[6] A. Bortz and D. Boneh. Exposing private information by timing web
applications. In IW3C, 2007.

[7] CCN now supports android. http://blogs.parc.com/blog/2010/11/
ccn-now-supports-android//.

[8] CCNx Node Model. http://www.ccnx.org/releases/latest/doc/technical/
CCNxProtocol.html.

[9] S. Crosby, D. Wallach, and R. Riedi. Opportunities and limits of remote
timing attacks. TISSEC, 12(3), 2009.

[10] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. Andana: Anonymous
named data networking application. In NDSS, 2012.

[11] E. Felten and M. Schneider. Timing attacks on web privacy. In CCS,
2000.

[12] R. Focardi, R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Mar-
tinelli, S. Tini, and E. Tronci. Formal models of timing attacks on web
privacy. ENTCS, 62, 2002.

[13] J. Garcia-Luna-Aceves, A. Dabirmoghaddam, and M. Mirzazad-
Barijoug. Understanding optimal caching and opportunistic caching
at” the edge” of information-centric networks. In Proceedings of the
1st international conference on Information-centric networking, 2014.

[14] C. Ghali, G. Tsudik, and E. Uzun. Network-layer trust in named-
data networking. ACM SIGCOMM Computer Communication Review,
44(5):12–19, 2014.

[15] Y. Gilad and A. Herzberg. Spying in the dark: Tcp and tor traffic anal-
ysis. In International Symposium on Privacy Enhancing Technologies
Symposium, pages 100–119. Springer, 2012.

[16] R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli, S. Tini,
and E. Tronci. Automated analysis of timed security: A aase study on
web privacy. IJIS, 2(3), 2004.

[17] M. Gotz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke.
Publishing search logs–a comparative study of privacy guarantees.
IEEE TKDE, 24(3):520 –532, 2012.

[18] IRCache Project. http://www.ircache.net/.
[19] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and

R. Braynard. Networking named content. In Co-NEXT, 2009.
[20] M. Jakobsson and S. Stamm. Web camouflage: Protecting your clients

from browser-sniffing attacks. S&P Magazine, 5(6), 2007.
[21] H. Krawczyk, R. Canetti, and M. Bellare. Hmac: Keyed-hashing for

message authentication. 1997.
[22] T. Lauinger. Security & scalability of content-centric networking.

Master’s thesis, Technische Universitat Darmstadt, 2010.
[23] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber.

Privacy: Theory meets practice on the map. In ICDE, 2008.
[24] A. Mohaisen, H. Mekky, X. Zhang, H. Xie, and Y. Kim. Timing attacks

on access privacy in information centric networks and countermeasures.
2015.

[25] A. Mohaisen, X. Zhang, M. Schuchard, H. Xie, and Y. Kim. Protecting
access privacy of cached contents in information centric networks.
In Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security, pages 173–178. ACM, 2013.

[26] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of tor. In 2005
IEEE Symposium on Security and Privacy (S&P’05), pages 183–195.
IEEE, 2005.

[27] Named Data Networking project (NDN). http://named-data.org.
[28] NDN Testbed. http://named-data.net/ndn-testbed/.
[29] The National Laboratory for Advanced Network Research Project. http:

//www.caida.org/projects/nlanr/.
[30] National Science Foundation of future Internet architecture (FIA)

program. http://www.nets-fia.net/.
[31] D. Plummer. Ethernet address resolution protocol: Or converting

network protocol addresses to 48. bit ethernet address for transmission
on ethernet hardware. 1982.

[32] S. Schinzel. An efficient mitigation method for timing side channels
on the Web. In COSADE, 2011.

[33] V. Shmatikov and M.-H. Wang. Timing analysis in low-latency mix
networks: Attacks and defenses. In European Symposium on Research
in Computer Security, pages 18–33. Springer, 2006.

[34] G. Tsudik, E. Uzun, and C. A. Wood. Ac3n: Anonymous communica-
tion in content-centric networking. In CCNC, 2016.

[35] Z. Weinberg, E. Chen, P. Jayaraman, and C. Jackson. I still know what
you visited last summer: Leaking browsing history via user interaction
and side channel attacks. In Symposium on S&P, 2011.

[36] G. Zhang, S. Fischer-Hübner, L. Martucci, and S. Ehlert. Revealing the
calling history of SIP VoIP systems by timing attacks. In ARES, 2009.

[37] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al.
Named data networking (NDN) project. Technical Report NDN-0001,
Xerox Palo Alto Research Center-PARC, 2010.

Gergely Acs is a freelance researcher. His re-
search focuses on different aspects of data pri-
vacy and security including privacy-preserving
machine learning, data anonymization, and pri-
vacy risk analysis. Between 2010 and 2016, he
was a research scholar and engineer at INRIA
where this current work was also performed.
He received his B.S., M.S., and Ph.D. degrees
from the Budapest University of Technology
and Economics, Hungary.

Mauro Conti is an an Associate Professor at
the University of Padua, Italy. He obtained his
Ph.D. from Sapienza University of Rome, Italy,
in 2009. After his Ph.D., he was a Post-Doc Re-
searcher at Vrije Universiteit Amsterdam, The
Netherlands. In 2011 he joined as Assistant
Professor the University of Padua, where he
became Associate Professor in 2015. He was
a Visiting Researcher at GMU (2008), UCLA
(2010), UCI (2012, 2013, and 2014), and TU
Darmstadt (2013). He has been awarded with
a Marie Curie Fellowship (2012) by the Eu-

ropean Commission, and with a Fellowship by the German DAAD
(2013). His main research interest is in the area of security and privacy.
He is Associate Editor for several journals, including IEEE Communi-
cations Surveys & Tutorials and IEEE Transactions on Information

Paolo Gasti is an assistant professor of Com-
puter Science at the New York Institute of
Technology (NYIT), School of Engineering
and Computing Sciences. Dr. Gasti’s research
focuses on behavioral biometrics, privacy-
preserving biometric authentication and identi-
fication, secure multi-party protocols, and net-
work security. Before joining NYIT, he worked
as a research scholar at University of Califor-
nia, Irvine. His research has been sponsored
by the National Science Foundation and the
Defense Advanced Research Project Agency.

He received his B.S., M.S., and Ph.D. degrees from University of
Genoa, Italy. He is a Fulbright scholar, and member of the IEEE.
He directs NYIT’s Laboratory for behavioral Authentication, Machine
learning and Privacy (LAMP).

Cesar Ghali Cesar Ghali received his Ph.D.
from the University of California, Irvine major-
ing in Network Systems. He received his M.S.
degree in Electrical and Computer Engineering
at the American University of Beirut in 2010,
where he also worked as a research assistant
from 2008 till 2012. Before that, Cesar received
his B.S. degree in Electrical Engineering from
the University of Aleppo in 2007. Cesar’s re-
search interests include information security,
network security and privacy, and web services
and cloud computing security.
Gene Tsudik Gene Tsudik is a Chancellor’s
Professor of Computer Science at UC Irvine
(UCI). He obtained his Ph.D. in Computer Sci-
ence from USC in 1991. He began his re-
search career at IBM Zurich Research Labora-
tory (1991-1996), followed by USC/ISI (1996-
2000) and UCI (since 2000). His research in-
terests include(d) numerous topics in secu-
rity, privacy and applied cryptography. Between
2009 and 2016 Gene served as the Editor-
in-Chief of ACM Transactions on Information
and Systems Security (TISSEC). He’s a former

Fulbright Scholar, current Fulbright Specialist, Fellow of the IEEE,
Fellow of the ACM and member of Academia Europaea. He directs
UCI Secure Computing and Networking Center (SCONCE).

Christopher A. Wood is a fourth year Ph.D.
student at the University of California Irvine,
focusing on the intersection of content-centric
networking security and privacy. He obtained
a B.S. in Software Engineering and Computer
Science and an M.S. in Computer Science
from the Rochester Institute of Technology
(RIT) in 2013. He was a member of the CCNx
team at PARC between 2013 and 2016. Ear-
lier, he interned at Intel, L-3 Communications,
and other small software firms. Christopher is
a recipient of the NSF GRFP fellowship, and a

student member of the IEEE, SIAM, ACM, and IACR.

