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Abstract. Personal Identification Numbers (PINs) are widely used as the
primary authentication method for Automated Teller Machines (ATMs)
and Point of Sale (PoS). ATM and PoS typically mitigate attacks in-
cluding shoulder-surfing by displaying dots on their screen rather than
PIN digits, and by obstructing the view of the keypad. In this paper, we
explore several sources of information leakage from common ATM and
PoS installations that the adversary can leverage to reduce the number
of attempts necessary to guess a PIN. Specifically, we evaluate how the
adversary can leverage audio feedback generated by a standard ATM
keypad to infer accurate inter-keystroke timing information, and how
these timings can be used to improve attacks based on the observation of
the user’s typing behavior, partial PIN information, and attacks based on
thermal cameras. Our results show that inter-keystroke timings can be
extracted from audio feedback far more accurately than from previously
explored sources (e.g., videos). In our experiments, this increase in accu-
racy translated to a meaningful increase in guessing performance. Further,
various combinations of these sources of information allowed us to guess
between 44% and 89% of the PINs within 5 attempts. Finally, we observed
that based on the type of information available to the adversary, and con-
trary to common knowledge, uniform PIN selection is not necessarily the
best strategy. We consider these results relevant and important, as they
highlight a real threat to any authentication system that relies on PINs.

1 Introduction

Authentication via Personal Identification Numbers (PINs) dates back to the
mid-sixties [5]. The first devices to use PINs were automatic dispensers and
control systems at gas stations, while the first applications in the banking sector
appeared in 1967 with cash machines [7]. PINs have found widespread use over
the years in devices with numeric keypads rather than full keyboards [22].

In the context of financial services, ISO 9564-1 [10] specifies basic security
principles for PINs and PIN entry devices (e.g., PIN pads). For instance, to
mitigate shoulder surfing attacks [17,12,13], ISO 9564-1 indicates that PIN digits
must not be displayed on a screen, or identified using different sounds or sound
duration for each key.



As a compromise between security and usability, PIN entry systems display a
fixed symbol (e.g., a dot) to represent a key being pressed, and provide the same
audio feedback (i.e., same tone, same duration) for all keys. While previous work
has demonstrated that observing the dots as they appear on screen as a result
of a key press reduces the search space for a PIN [4], to our knowledge no work
has targeted the use of audio feedback to recover PINs.

In this paper, we evaluate how the adversary can reduce PIN search space
using audio feedback, with (and without) using observable information such as
PIN typing behavior (one- or two-handed), knowledge of one digit of the PIN,
and knowledge of which keys have been pressed. We compare our attacks with
an attack based on the knowledge of PIN distribution.

Exploiting audio feedback has several advantages compared to observing the
user or the screen during PIN entry. First, sound is typically easier to collect. The
adversary might not be able to observe the ATM’s screen directly, and might risk
being exposed when video-recording an ATM in a public space. In contrast, it is
easy to record audio covertly, e.g., by casually holding a smartphone while pretend-
ing to stand in a line behind other ATM users. The sound emitted by ATMs is quite
distinctive and can be easily isolated even in noisy environments. Second, sound
enables higher time resolution compared to video. Conventional video cameras
and smartphones record video between 24 and 120 frames per second. In contrast,
audio can be recorded with a sampling rate between 44.1 kHz and 192 kHz, thus
potentially allowing at least two orders of magnitude higher resolution.

Contributions. In this paper, we analyze several novel side channels associated
with PIN entry. In particular:

1. We show that it is possible to retrieve accurate inter-keystroke timing infor-
mation from audio feedback. In our experiments, we were able to correctly
detect 98% of the keystroke feedback sounds with an average error of 1.8ms.
Furthermore, 75% of inter-keystroke timings extracted by the software had
absolute error under 15 ms. Our experiments also demonstrate that inter-
keystroke timings extracted from audio can be more accurate than the same
extracted from video recordings of PIN entry as done in [3,4].

2. We analyze how the behavior of the user affects the adversary’s ability to
guess PINs. Our results show that users who type PINs with one finger are
more vulnerable to PIN guessing from inter-keystroke timings compared to
users that enter their PIN using at least two fingers. In particular, the combin-
ing inter-keystroke timing with the knowledge that the user is a single-finger
typist leads to 34-fold improvement over random guessing when the adversary
is allowed to perform up to 5 guessing attempts.

3. We combine inter-keystroke timing information with knowledge of one key
in the PIN (i.e., the adversary was able to see either the first or the last key
pressed by the user), and with knowledge of which keys have been pressed by
the user. The latter information is available, as shown in this paper as well as in
recent work [24,11,1,16] when the adversary is able to capture a thermal image
of the PIN pad after the user has typed her PIN. Our experiments show that
inter-keystroke timing significantly improves performance for both attacks.



For example, by combining inter-keystroke timing with a thermal attack, we
were able to guess 15% of the PINs at the first attempt, reaching a four-fold
improvement in performance. By combining multiple attacks, we were also
able to drastically reduce the number of attempts required to guess a PIN.
Specifically, we were able to guess 72% of the PINs within the first 3 attempts.

4. Finally, we show that uniform PIN selection might not be the best strat-
egy against an adversary with access to one or more of the side-channel
information discussed in this paper.

Organization. Section 2 reviews related work on password and PIN guessing.
Section 3 presents our adversary model. We present our algorithms for inter-
keystroke timing extraction in Section 4.1. In Section 4, we present the results of
our experiments, while in Section 5 we analyze how different side-channels affect
the guessing probability of individual PINs. We conclude in Section 6.

2 Related Work

Non-acoustic Side-channels. Vuagnoux and Pasini [20] demonstrated that it
is possible to recover keystrokes by analyzing electromagnetic emanations from
electronic components in wired and wireless keyboards. Marquardt et al. [15]
showed that it is possible to recover key presses by recoding vibrations generated
by a keyboard using an accelerometer. Other attacks focus on keystroke inference
via motion detection from embedded sensors on wearable devices. For example,
Sarkisyan et al. [18] and Wang et al. [21] infer smartphone PINs using movement
data recorded by a smartwatch.

Those attacks require that the adversary is able to monitor the user’s activity
while the user is typing. However, there are attacks that allow the adversary
to exploit information available several seconds after the user has typed her
password. For instance, one such attack is based the observation that when a user
presses a key, the heat from her finger is transferred to the keypad, and can be
later be measured using a thermal camera [24]. Depending on the material of the
keyboard, thermal residues have different dissipation rates [16], thus affecting the
time window in which the attacks are effective. Abdelrahman et al. [1] evaluated
how different PINs and unlock patterns on smartphones on can influence thermal
attack performance. Kaczmarek et al. [11] demonstrated how a thermal attack
can recover precise information about a password up to 30 seconds after it was
typed, and partial information within 60 seconds.

Acoustic Side-channels. Asonov and Agrawal showed that each key on a key-
board emits a characteristic sound, and that this sound can be used to infer
individual keys [2]. Subsequent work further demonstrated the effectiveness of
sound emanation for text reconstruction. Berger et al. [6] combined keyboard
acoustic emanation with a dictionary attack to reconstruct words, while Halevi and
Saxena [9] analyzed keyboard acoustic emanations to eavesdrop over random pass-
word. Because ISO 9564-1 [10] specifications require that each key emits the same
sound, those attacks do not apply to common keypads, including those on ATMs.



Another type of acoustic attack is based on time difference of arrivals
(TDoA) [25,23,14]. These attacks rely on multiple microphones to triangulate
the position of the keys pressed. Although this attacks typically result in good
accuracies, they are difficult to instantiate in realistic environments.

Song et al. [19] presented an attack based on latency between key presses
measured by snooping encrypted SSH traffic. Their experiments show that infor-
mation about inter-keystroke timing can be used to narrow the password search
space substantially. A similar approach was used by Balagani et al. [4], who
reconstructed inter-keystroke timing from the time of appearance of the masking
symbols (e.g., “dots”) while a user types her password. Similarly, Balagani et
al. [3] demonstrated that precise inter-keystroke timing information recovered
from videos drastically reduces the number of attempts required to guess a PIN.
The main limitation of [4,3] is that they require the adversary to video-record
the ATM screen while the user is typing her PIN. Depending on the location and
the ATM, this might not be feasible. Further, this reduces the set of vulnerable
ATMs and payment systems to those that display on-screen feedback.

To our knowledge, this is the first paper to combine inter-keystroke timing in-
formation deduced from sound recording with observable information from other
sources, and thereby drastically reduce the attempts to guess a PIN compared
to prior work. Our attacks are applicable to a multitude of realistic scenarios.
This poses an immediate and severe threat to current ATMs or PoS.

3 Adversary Model

In this section we evaluate four classes of information that the adversary can ex-
ploit to infer PINs. These classes are: (1) Key-stroke timing information extracted
from audio recordings; (2) Knowledge of whether the user is a single- or multi-
finger typist; (3) Information about the first or the last digit of the PIN; and (4) In-
formation about which keys have been pressed, but not their order. Next, we briefly
review how each of these classes of information can be collected by the adversary.

Class 1: Keystroke Timing. Keystroke timing measures the distance between
consecutive keystroke events (e.g., the time between two key presses, or between
the release of the key and the subsequent keypress). Collecting keystroke timing
by compromising the software of an ATM located in a public space, or physically
tampering with the ATM (e.g., by modifying the ATM’s keyboard) is not practical
in most cases. However, as shown in [3], the adversary can infer keystroke timings
without tampering with the ATM by using video recordings of the “dots” that
appear on the screens when the user types her PIN. In this paper, we leverage
audio signals to infer precise inter-keystroke timings.

Class 2: Single- or Multi-finger Typists. The adversary can typically di-
rectly observe whether the user is typing with one or more fingers. While the
number of fingers used to enter a PIN does not reveal information about the PIN
itself, it might be a useful constraint when evaluating other sources of information
leakage. Figure 1 shows users typing using a different number of fingers.



Fig. 1: Different typing strategies. Left: one finger; center: multiple fingers of
one hand; right: multiple fingers of two hands.

Class 3: Information about the first or the last digit of the PIN. As
users move their hands while typing their PIN, the adversary might briefly have
visibility of the keypad, and might be able to see one of the keys as it is pressed
(see Figure 1). We model this information by disclosing either the first or the
last digit of the PIN to the adversary.

Class 4: Which Keys Have Been Pressed. This information can be collected
using various techniques. For instance, the adversary can use a thermal camera
to determine which keys are warmer, thus learning which digits compose the
PIN (see, e.g., Figure ). As an alternative, the adversary can place UV-sensitive
powder on the keys before the user enters her PIN, and then check which keys
had the powder removed by the users using a UV light.

While these attacks do not reveal the order in which the keys were pressed
(except when the PIN is composed of one repeated digit), they significantly re-
strict the search space. Although this attack can be typically performed covertly,
it requires specialized equipment.

4 Experiment Results

We extracted keystroke sounds using the dataset from [4]. This dataset was
collected from 22 subjects, who typed several 4-digit PINS on a simulated ATM
(see Figure 3). Nineteen subjects completed three data collection sessions, while
three subjects completed only one session.

In each session, subjects entered a total of 180 PINs as follows: each subject
was shown a 4-digit PIN. The PIN remained on the screen for 10 seconds, during
which the subject was encouraged to type the PIN multiple times. After 10
seconds, the PIN disappeared from the screen. At this point, the subject was
asked to type the PIN 4 times from memory. In case of incorrect entry, the PIN



(a) Thermal trace after 2 seconds. (b) Thermal trace after 7 seconds.

(c) Thermal trace after 10 seconds. (d) Thermal trace after 15 seconds.

Fig. 2: Thermal image of a metallic PIN pad after applying a transparent plastic
cover for PIN 2200.

was briefly displayed again on the screen, and the subject was allowed to re-enter
it. This procedure was repeated in three batches of 15 PINs. As a result, each
PIN was typed 12 times per session.

Each time a subject pressed a key, the ATM simulator emitted an audio
feedback and logged the corresponding timestamp with millisecond resolution.
Users were asked to type 44 different 4-digit PINs which represented all the
Euclidean distances between keys on the keypad. Sessions were recorded in a
relatively noisy indoor public space (SNR −15 dB) using a Sony FDR-AX53
camera located approximately 1.5 m away from the PIN pad. The audio signal
was recorded with a sampling frequency of 48 kHz.

4.1 Extraction of Keystroke Timings from Keypad Sound

To evaluate the accuracy of timing extraction from keystroke sounds, we first
linearly normalized the audio recording amplitude in the interval [−1, 1]. We
applied a 16-order Butterworth band-pass filter [8] centered at 5.6 kHz to isolate



Fig. 3: Left: user typing a PIN using the ATM simulator. Right: close up view
of the ATM simulator’s keypad.

the characteristic frequency window of the keypad feedback sound. Finally, to
isolate the signal from room noise, we processed the audio recording to “mute”
all samples with an amplitude below a set threshold (0.01 in our experiments).

We then calculated the maximum amplitude across nearby values in a sliding
window of 1,200 samples (consecutive windows had 1199 overlapping samples),
corresponding to 25 milliseconds of audio recording. We determined the length
of the window by evaluating the distance between consecutive timestamps logged
by the ATM simulator (ground truth), which was at least 100 ms for 99.9% of
the keypairs. Figure 4 shows the result of this process.

We then extracted the timestamps of the peaks of the processed signal and
compared them to the ground truth. Our results show that this algorithm can
accurately estimate inter-keystroke timing information. We were able to correctly
detect 98% of feedback sound with a mean error of 1.8 ms.

Extracting timings from audio led to more accurate time estimation than using
video [4]. With the latter, 75% of the extracted keystroke timings had errors of up
to 37 ms. In contrast, using audio we were able to extract 75% of the keystroke with
errors below 15 ms. Similarly, using video, 50% of the estimated keystrokes timings
had errors of up to 22 ms, compared to less than 7 ms with audio. Figure 5 shows
the errors distribution for timings extracted from video and audio recordings.

4.2 PIN Inference from Keystroke Timing (Class 1)

This attack ranks PINs based on the estimated Euclidean distance between
subsequent keys in each PIN. In particular, we calculated an inter-key Euclidean
distance vector from a sequence of inter-keystroke timings inferred from audio
feedback. As an example, the distance vector associated with PIN 5566 is [0, 1, 0],
where the first ‘0’ is the distance between keys 5 and 5, ‘1’ between keys 5 and 6,
and ‘0’ between 6 and 6. Any four-digit PIN is associated with one distance vector
of size three. Each element of the distance vector can be 0, 1, 2, 3, diagonal distance



1 (e.g., 1-3), diagonal distance 2 (e.g., 3-7), short diagonal distance (e.g., 2-9),
or long diagonal distance (e.g., 3-0). Different PINs might be associated with the
same distance vector (e.g., 1234 and 4567). The goal of this attack is to reduce the
search space by considering only PINs that match the estimated distance vector.

For evaluation, we split our keystroke dataset into two sets. The first (training
set) consists of 5195 PINs, typed by 11 subjects. The second (test set) consists
of 5135 PINs, typed by a separate set of 11 subjects. This models the lack of
knowledge of the adversary of the specific typing patterns of the victim user.

To estimate the Euclidean distances between consequent keys, we modeled
a set of gamma function on the inter-keystroke timing distribution, one for each
distance. We then applied the algorithm from [3] to infer PINs from estimated
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Fig. 6: CDF showing the percentage of PINs recovered using keystroke timing
information derived from the ground truth (logged), sound feedback, and video.

distances. With this strategy, we were able to guess 4% of PINs within 20
attempts—a 20-fold improvement compared to random guessing.

Figure 6 shows how timings extracted from audio and video feedback affect
the number of PIN guessed by the algorithm compared to ground truth. Timings
extracted from audio feedback exhibit a smaller decrease in guessing performance
compared to timings extracted from video.

4.3 PIN Inference from Keystroke Timing and Typing
Behavior (Class 2)

This attack improves on the keystroke timing attack by leveraging knowledge of
whether the user is a single- or multi-finger typist. This additional information
allows the adversary to better contextualize the timings between consecutive
keys. For single-finger typists, the Euclidean distance between keys 1 and 0 is
the largest (see Fig 3), and therefore we expect the corresponding inter-keystroke
timing to be the largest. However, if the user is a two-finger typist, then 1 might
be typed with the right hand index finger, and 0 with the left hand index finger.
As a result, the inter-keystroke time might not be representative of the Euclidean
distance between the two keys.

To systematically study typing behavior, we analyzed 61 videos from the 22
subjects. 70% of the subject were single-finger typists; 92% of them entered PINs
using the index finger, and 8% with the thumb. We divided multi-finger typists
into three subclasses: (1) PINs entered using fingers from two hands (38% of the



PINs typed with more than one finger); (2) PINs entered with at least two fingers
of the same hand (34% of the PINs typed with more than one finger); and (3)
PINs that we were not able to classify with certainty due obfuscation of the PIN
pad in the video recording (28% of the PINs typed with more than one finger).

In our experiments, subjects’ typing behavior was quite consistent across
PINs and sessions. Users that were predominantly single-finger typists entered
11% of their PINs using more than one finger, while multi-finger typists entered
23% of the PINs using one finger.

We evaluated guessing performance of timing information inferred from audio
feedback on single-finger PINs and multi-finger PINs separately. We were able
to guess a substantially higher number of PINs for each number of attempts
for users single-finger typists (see Figure 7) compared to multi-finger typists.
In particular, the percentage of PINs recovered within 5 attempts was twice as
high for PINs entered with one finger compared to PINs entered with multiple
fingers. Further, the guessing rate within the first 5 attempts was 34 times higher
compared to random guessing when using timing information on single-finger
PINs. However, our ability to guess multi-finger PINs using timing information
was only slightly better than random. This strongly suggests that the correlation
between inter-keystroke timing and Euclidean distance identified in [4] holds only
quite strongly for PINs entered using a single finger, and only marginally for
PINs entered with two or more fingers.
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timing information from audio feedback, compared to timing information for
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4.4 Knowledge of the First or the Last Digit of the PIN (Class 3)

In this section, we examine how information on the first or last digit of the PIN
reduces the search space when combined with keystroke timings. Knowledge of
one digit alone reduces the search space by a factor of 10 regardless of the digit’s
position, because the adversary needs to guess only the remaining three digits.
(As a result, the expected number of attempts to guess a random PIN provided
no additional information is 500.)

To determine how knowledge of the first or the last digit impacts PIN guess-
ing based on keystroke timing, we applied the same procedure described in
Section 4.2: for each PIN in the testing set, we associated a list of triplets of
distances sorted by probability. We then pruned the set of PINs associated with
those distance triplets to match the knowledge of the first or last PIN. For
instance, given only the estimated distances 3, 0, and

√
2, the associated PINs

are 0007, 0009, 2224, and 2226. If we know that the first digit of the correct
PIN is 2, then our guesses are reduced to 2224 and 2226.

Information about the first or last digit of the PIN boosted the guessing
performance of the keystroke-timing attack substantially, as shown in Figure 8. In
particular, guessing accuracy increased by 15-19 times within 3 attempts (4.36%
guessing rate when the first digit was known, and 5.57% when the last digit
was known), 7 times within 5 attempts, and about 4 times within 10 attempts,
compared to timing information alone. In all three cases, timing information
substantially outperformed knowledge of one of the digits in terms of guessing rate.
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4.5 Knowledge of Which Keys Have Been Pressed (Class 4)

In this section, we evaluate how knowledge of which digits compose a PIN, but
not their order, restricts the PIN search space, in conjunction with information
about keystroke timings. The adversary can acquire this knowledge, for instance,
by observing the keypad using a thermal camera shortly after the user has typed
her PIN [11], or by placing UV-sensitive powder on the keys before the user
enters her PIN, and then checking which keys were touched using a UV light.

Information on which digits compose a PIN can be divided as follows:

1. The user pressed only one key. In this case, the user must have entered the
same digit 4 times. No additional information is required to recover the PIN.

2. The user pressed two distinct keys, and therefore each digit of the PIN might
be repeated between one and three times, and might be in any position of the
PIN. In this case, the number of possible PINs is 24−2 = 14, i.e., the number
of combinations of two values in four position, except for the combinations
where only one of the two digits appears.

3. The user pressed three distinct keys. The number of possible PINs is equal
to the combinations of three digits in four positions, i.e., 4 · 3 · 3 = 36

4. The user pressed four distinct keys. The number of possible PINs is 4! = 24.

We evaluated how many PINs the adversary could recover given keystroke
timings and the set of keys pressed by the user while entering the PIN. Our results,
presented in Figure 9, show that combining these two sources of information
leads to a high PIN recovery rate. Specifically, within the first three attempts,
knowing only which keys were pressed led to the recovery of about 11% of the
PINs. Adding timing information increased this value to over 33%.
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keys have been pressed with and without inter-keystroke timing information.



4.6 Combining Multiple Classes of Information

In this section we examine how combining multiple classes of information leads
to an improvement in the probability of correctly guessing a PIN.

First, we investigated how guessing probability increases when the adversary
knows one of the digits of the PIN (first or last), the typing behavior (single-
finger typist), and is able to infer inter-keystroke timing information from audio
feedback. We used 3461 PINs typed by 11 subjects containing only single-finger
PINs. In our experiments, we were able to guess 8.73% of the PINs within 5
attempts, compared to 6.97% with timing information and knowledge of one digit.

We then considered knowledge of the values composing the PIN, typing be-
havior, and inferred timing information. In this case, we successfully guessed
50.74% of the PINs within 5 attempts, and 71.39% within 10 attempts.

Finally, when we considered the values composing the PIN, one of the PIN’s
digits, and inferred timing information, we were able to guess 86.76% of the PINs
in 5 attempts, and effectively all of them (98.99%) within 10 attempts.

All our results are summarized in Table 1.

5 PINs and Their Guessing Probability Distribution

In this section, we evaluate whether the classes of information identified in this
paper make some of the PINs easier to guess than others, and thus intrinsically
less secure. With respect to estimated inter-keystroke timings, different timing
vectors identify a different number of PINs. For instance, vector [0,0,0] corre-
sponds to 10 distinct PINs (0000, 1111, . . .), while vector [1,1,1] corresponds to
216 PINs (0258, 4569, . . .). This indicates that, against adversaries who are able
to infer inter-keystroke timing information, choosing PINs uniformly at random
from the entire PIN space is not the best strategy.

The adversary’s knowledge of which digits compose the PIN has a similar effect
of the guessing probability of individual PINs. In this case, PINs composed of three
different digits are the hardest to guess, with a probability of 1/36, compared to
PINs composed of a single digit, which can always be guessed at the first attempt.

The adversary’s knowledge of one digit of the PIN and/or the typing behavior
do not affect the guessing probability of individual PINs.

6 Conclusion

In this paper, we showed that inter-keystroke timing inferred from audio feedback
emitted by a PIN pad compliant with ISO 9564-1 [10] can be effectively used
to reduce the attempts to guess a PIN. Compared to prior sources of keystroke
timing information, audio feedback is easier to collect, and leads to more accurate
timing estimates (in our experiments, the average reconstruction error was 1.8 ms).
Due to this increase in accuracy, we were able to reduce the number of attempts
needed to guess a PIN compared to timing information extracted from videos.



Table 1: Results from all combinations of attacks considered in this paper,
sorting by guessing rate after 5 attempts. Because single finger reduces the PIN
search space only in conjunction with inter-keystroke timings, we do not present
results for single finger alone.

Information PINs Guessed Within Attempt

Keystroke
Timing

Single
Finger

First
Digit

PIN
Digits

1 2 3 5 10

0.01% 0.02% 0.03% 0.05% 0.10%

o 0.10% 0.20% 0.30% 0.50% 1.00%

o 0.02% 0.31% 0.70% 1.05% 2.51%

o o 0.03% 0.52% 0.91% 1.30% 3.38%

o o 3.02% 3.72% 4.36% 6.97% 11.04%

o o o 3.73% 4.13% 5.43% 8.73% 14.01%

o 3.76% 7.52% 11.28% 18.80% 37.60%

o o 15.54% 27.79% 33.63% 44.25% 65.57%

o o o 19.04% 34.01% 40.60% 50.74% 71.31%

o o 13.27% 26.62% 39.88% 66.40% 92.80%

o o o 35.27% 53.46% 66.84% 86.76% 98.99%

o o o o 40.86% 60.24% 71.77% 89.19% 99.28%

We then analyzed how using inter-keystroke timing increases guessing perfor-
mance of other sources of information readily available to the adversary. When the
adversary was able to observe the first or the last digit of a PIN, inter-keystroke
timings further increased the number of PINs guessed within 5 attempts by
14 times. If the adversaries was capable of observing which keys were pressed
to enter a PIN (e.g., using a thermal camera), adding inter-keystroke timing
information allowed the adversary to guess 15% of the PINs with a single attempt.
This corresponds to a 4 times reduction in the number of attempts compared
to knowing only which keys were pressed.



We evaluated how typing behavior affects guessing probabilities. Our results
show that there is a strong correlation between Euclidean distance between
keys and inter-keystroke timings when the user enters her PIN using one finger.
However, this correlation was substantially weaker when users typed with more
than one finger.

We then showed that the combination of multiple attacks can dramatically
reduce attempts to guess the PIN. In particular, we were able to guess 72% of the
PINs within the first 3 attempts, and about 90% of the PINs within 5 attempts,
by combining all the sources of information considered in this paper.

Finally, we observed that different adversaries require different PIN selection
strategies. While normally PINs should be selected uniformly at random from the
entire PIN space, this is not true when the adversary has access to inter-keystroke
timings or thermal images. In this case, some classes of PINs (e.g., those com-
posed of a single digit) are substantially easier to guess than other classes (e.g.,
those composed of three different digits). As a result, uniform selection from
appropriate subsets of the entire PIN space leads to harder-to-guess PINs against
those adversaries.

We believe that our results highlight a real threat to PIN authentication sys-
tems. The feasibility of these attacks and their immediate applicability in real sce-
narios poses a considerable security threat for ATMs, PoS-s, and similar devices.
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