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A B S T R A C T

The goal of continuous smartphone authentication is to detect when the adversary has gained
possession of the user’s device post-login. This is achieved by triggering re-authentication at
fixed, frequent intervals. However, these intervals do not take into account external information
that might indicate that the impostor has gained physical access to the user’s device. Continuous
smartphone authentication typically relies on behavioral cues, such as hand movement and
touchscreen swipes, that can be collected without interrupting the user’s activity. Because these
behavioral signals are characterized by relatively high error rates compared to physiological
biometrics, their use at fixed intervals leads to unnecessary interruptions to the user’s activity
in case of a false reject, and to not recognizing the impostor in case of a false accept.

To address these issues, in this paper we introduce a novel framework called SMARTCOPE:
Smartphone Change Of Possession Evaluation. In this work, SMARTCOPE leverages smartphone
movement signals collected during user activity to determine when the smartphone is no
longer in the hands of its owner. When this occurs, SMARTCOPE triggers re-authentication.
By using these signals, we are able to reduce the total number of re-authentication points while
simultaneously lowering re-authentication error rates. Our analysis shows that our technique
can reduce equal error rates by over 40%, from 7.8% to 4.6% using movement and keystroke
features. Further, we show that SMARTCOPE can be used to transform a static (login-time)
authentication system, such as face recognition, to a continuous re-authentication system, with
a significant increase in security and limited impact on usability.

. Introduction

Smartphones are commonly used to store and access private and sensitive information. However, over a quarter of Americans
o not protect their smartphones using any authentication method [1], primarily because of the lack of usability of smartphone
uthentication techniques [2,3]. Users that choose to protect their devices rely on what is offered by their device’s hardware
nd operating system, which typically includes PINs, passwords, fingerprint, and face recognition. These static authentication
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mechanisms are susceptible to guessing [4], spoofing [5], dictionary attacks [6] and side-channel attacks [7,8]. Further, these
security mechanisms protect the device only at login, or ‘‘unlock’’ time. If the adversary gains physical access to an unlocked device,
they can potentially access all the data stored on the device. The goal of continuous authentication is to mitigate this threat [3,9].

Continuous smartphone authentication typically uses behavioral signals that can be sampled continuously without interrupting
he user, such as touchscreen interactions [10–13], gait signals [14,15], eye gazing [16], and hand movement, orientation, and
rasp (HMOG) [17]. These signals can be leveraged to authenticate users post-login without requiring any additional effort
rom the user and thus, at least in principle, without impacting usability. Continuous authentication technology has also been
uccessfully deployed in commercial settings, targeting primarily payments servicing industries [18]. For example, Sardine.ai [19]
nd BehavioSec [20] currently offer commercial products that include behavioral continuous authentication for smartphones. These
ystems have demonstrated reasonable accuracies in production settings [20].

However, continuous authentication has several important limitations. The identity of the user is verified at fixed intervals,
rrespective of external cues that indicate that the smartphone is being continuously used by the same user since authentication.
his impacts both security and usability. Security, because of high authentication latencies, due to authentication being triggered
everal seconds – or even minutes – after the adversary has grabbed the smartphone. Usability, because the relatively high false reject
ates associated with behavioral signals can lead to users being prompted often to re-authenticate using more intrusive mechanisms
uch as passwords, PINs, or physiological biometrics.

In this paper, we address these two issues by introducing SMARTCOPE (Smartphone Change Of Possession Evaluation), a
ovel activity recognition framework that identifies whether the legitimate user has likely lost possession of their smartphone.
hen a ‘‘change of possession’’ event is detected, SMARTCOPE triggers re-authentication. This step can rely on either behavioral

uthentication mechanisms, or physiological biometrics. In the former case, the framework is able to improve both security and
sability. False rejects are reduced by triggering behavioral re-authentication only when fairly confident that the device has changed
ands, while false accept rates are reduced because the behavioral modality used to authenticate the user can be set to more
tringent thresholds that make it more difficult for the adversary to evade detection. When instantiated with physiological biometrics,
MARTCOPE is the first system to transform a static authentication mechanism into a continuous re-authentication system. As a
esult, SMARTCOPE combined with physiological biometrics results in a drastic drop of post-unlock false accept rates: from 100%
no re-authentication is triggered when the attacker grabs the user’s smartphone) to about 0.01% at 3.5% false reject rate as shown
n our experiments.

Detection of change of possession is different from traditional authentication: rather than verifying the identity of the user, the
oal is to identify cues that indicate interruptions in the user’s possession of the phone. As a result, change of possession can be
etected without user-specific training data, and therefore training can be performed offline on powerful computer systems, while
rediction can be efficiently performed using energy-constrained devices such as smartphones.

Our experiments show that SMARTCOPE can significantly improve the authentication error rates of continuous authentication
ystems. For instance, our results show that SMARTCOPE can reduce the equal error rate of a continuous authentication system
ased on HMOG from 7.8% to 4.6%. While we use HMOG and face recognition to evaluate SMARTCOPE, this framework can be
sed with any biometric modality, including multi-modal biometrics.

In our evaluation, we also focus on the distinction between two types of ‘‘change of possession’’ events: (1) ‘‘give’’, where the
ser intentionally surrenders their device to another party; and ‘‘grab’’, where the device is forcefully taken from the hands of the
ser. To evaluate our approach, we collected and analyzed smartphone sensor data from 48 unique users.1 This data was collected

with the approval of New York Institute of Technology’s Institutional Review Board (IRB). We show that our activity detection
framework can be tuned to detect both types of events with high recall and precision (86.5% recall and 79.4% precision for grabs,
and 74.6% recall and 83.3% precision for gives). This is important because, in practice, the user may want to be able to hand their
device to another person without triggering re-authentication. For example, the user may want to give their device to a friend to
show a picture. In this case, the device could be configured to lock highly-sensitive applications (e.g., banking apps) while allowing
the use of less sensitive applications (e.g., a photo app). In contrast, when the device determines that it has just been grabbed from
the hands of the user, it can lock itself and require explicit re-authentication.

Finally, we evaluate our framework against ‘‘rest’’ events. In this case, the user intentionally places the device on a table, thus
relinquishing possession of it. We show that our framework can identify ‘‘rest’’ events with a recall of 74.9% and a precision of
86.5%.

1.1. Organization

The rest of this paper is organized as follows. Related research is reviewed in Section 2. In Section 3, we present SMARTCOPE
and our methodology for evaluation, dataset, and parameters examined. Section 4 details our experiments, while Section 5 reports
on our results. In Section 6 we discuss issues related to SMARTCOPE. We conclude in Section 7.

1 As a further contribution of this work, we made the resulting dataset available for download: https://www.nyit-lamp.com/dataset/dataset3/
2
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2. Related work

There is a substantial body of work that addresses continuous authentication using behavioral features, including movement [17,
1,22], gait [23,24], pose [25], device interaction such as touch and swipe [26–29], and a combination of all of the above [30,31].
imilarly, human activity recognition (HAR) is a well-studied area due to its importance in human–computer interaction and mobile
omputing. The goal of HAR is to extract high-level knowledge about human activity from raw sensor data [32]. Research in the field
egan by using external or wearable sensors to acquire data from accelerometers and classify activities [33], and then shifted towards
ensors onboard mobile devices and smartphones as they became available. The traditional activity recognition chain consists of
ata preprocessing, segmentation, feature extraction, and classification [34]. HAR has developed into its own field in machine
earning [35] which has many applications in health care, fitness [36], human–machine interfacing and security. Extensive research
as been completed using the inertial sensors (accelerometers and gyroscopes) to identify user activity [37–39]. A public domain
ataset for HAR using smartphones has been released by Anguita et al. [40], and thoroughly analyzed in [37,41–43].

Smartphones can recognize many simple, daily activities with high accuracy. Common, repetitive behaviors such as walking,
ogging, and climbing stairs have been recognized with accuracies ranging from 90% to 98% [37,44,45]. However, while it is
traightforward to recognize repetitive activities that span long timescales, there is no established way of classifying short, non-
eriodic events. One study that tried to identify complex activities such as cleaning, cooking, taking medication, sweeping and
ashing hands using time-domain features extracted from accelerometers achieved accuracies as low as 50% [38].

Even if HAR techniques are successfully used for one recognition problem, they may not be as well adapted for a new problem
omain [34,46]. Given the unknown duration of activities of interest, no single window length can be a ‘‘perfect fit’’ for all activities
f interest [47]. Current research does not show a proven method to identify short, non-cyclic events such as giving or grabbing a
martphone.

Wójtowicz et al. [48] explores the idea of context-driven biometric authentication. Specifically, they look for a series of
nvironmental cues that indicate which biometric modalities are more appropriate given the current context. For instance, their
echnique would not trigger voice authentication in a very loud environment.

Ramakrishnan et al. [49] demonstrates that the behavioral patterns of a user can be used to determine if they are still in control
f the device. Their proposed solution works by detecting behavioral anomalies in addition to other data sources such as device
ocation, activity, and application usage.

Chen et al. [50] introduces ‘‘device sharing awareness’’ (DSA), a system that detects when a user shares their device with a friend,
nd locks certain sensitive applications. In contrast to our work, DSA does not rely on a proper biometric authentication mechanism
o determine whether the user is still in control/possession of her device. Further, DSA only considers scenarios in which the user
illfully hands the phone to a friend. However, in our analysis, we assume that change of possession events correspond to attacks.
urther, Chen et al. do not consider the detection of grab events, which is a key contribution of our work.

Liu et al. [51] presents a system to detect pickpocketing and grab-and-run theft based on accelerometer data. Liu et al. collected
aseline data from 53 participants to serve as a baseline negative, after which simulated thefts were done in a lab setting with
esearchers. In their analysis, Liu et al. focus exclusively on the activity detection aspect of recognizing grab events. In contrast, we
ocus on both grab and give events, and combine this detection with behavioral and physiological biometrics. Our work demonstrates
hat, by combining change of possession detection with behavioral biometric authentication, we can achieve significant reductions
n authentication error rates.

Riva et al. [52] aims to reduce the authentication error rates and energy footprint of active authentication by determining when
ot to re-authenticate based on user’s activity. Their approach makes re-authentication decisions based on events such as: ‘‘is the
ser touching the screen?’’ These events include a large number of possibilities that vary across individuals depending on their app
sage patterns and preferences.

We believe that SMARTCOPE and Riva et al. represent two different and potentially complementary approaches to address the
ame challenge: when to re-authenticate. However, the primary differences between these two approaches are related to: (1) the

impact of false positives and false negatives on security and usability; (2) the number and variety of events that the two approaches
must accurately identify; and (3) the availability of signals needed by SMARTCOPE and Riva et al.

With respect to (1), with SMARTCOPE a false positive has a potential impact on usability, because authentication is triggered
when not needed. With Riva et al. a false positive impacts security because it implies that an adversarial event has been missed. The
reverse is true for false negatives. As a result, the two approaches provide alternatives for systems with different security/usability
tradeoffs and their tolerance to false positives/false negatives.

With respect to (2), SMARTCOPE deals with a small number of events which are relatively similar (e.g., measurable using the
same sensors), and yet distinguishable. This simplifies the recognition task. On the other hand, Riva et al. must identify a larger set
of events (Riva et al. lists nine activities), which potentially increases the complexity of the recognition task.

With respect to (3), Riva et al. requires signals that indicate continuity of a certain event. These signals might not be always
available. In contrast, the signals leveraged by SMARTCOPE are triggered by adversarial events, and therefore they are always
available during attacks.
3
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3. SMARTCOPE rationale

The goal of SMARTCOPE is to detect when the user has lost possession of their smartphone. With SMARTCOPE, the smartphone
onsistently monitors for change of possession events. When the framework determines that a change of possession occurred, it
riggers re-authentication. We model this behavior in terms of confidence on identity (CoI), which indicates the probability that
he user is still in possession of the smartphone. Right after unlocking the device, CoI is high because the user just authenticated
sing a static authentication mechanism. As time passes, CoI decreases because the adversary may have gained possession of the
martphone. SMARTCOPE adds another dimension to this problem by indicating whether a change of possession event has likely
ccurred. When this happens, CoI drops to zero and re-authentication is triggered.

SMARTCOPE also addresses the tradeoff between security and usability defined by the choice of authentication window length.
longer authentication window typically allows more accurate authentication [17,53]. However, it also gives the adversary more

ime to use the system without being detected, thus increasing the impact of the attack. A shorter authentication window can be
sed to identify the adversary more quickly, but will lead to lower accuracy. SMARTCOPE aims to offer the best of both worlds. It
rovides high authentication accuracy and low authentication latency by triggering authentication only when it detects change of
ossession. Because events of interest are rare, the underlying biometric authentication mechanism can be skewed towards lower
alse accept rate (FAR), while SMARTCOPE overall does not incur in higher false reject rate (FRR), and thus can tolerate short
uthentication windows without impacting usability. Without SMARTCOPE, this would not be possible.

In order to demonstrate SMARTCOPE as a framework capable of integrating with any biometric, we use two distinct modalities:
MOG [17] (a behavioral biometric) and face [54] (a physiological biometric). Behavioral biometrics are used to authenticate

he user transparently, i.e., without interrupting the user’s activity. Physiological biometrics are used to authenticate the user by
equiring the user to cooperate. Both are representative of biometrics that are currently deployed in modern smartphones.

Our analysis is based on the HMOG authentication error rates reported in Sitová et al. [17],2 and on the CloudWalk MT 007 error
rates under the ‘‘Visa Border’’ [54]. HMOG relies on information pertaining to hand movement, orientation, and grasp collected
during several common smartphone activities. Sitová et al. [17] provides results for 120-s and 60-s authentication windows. In
this work we use HMOG performance at 60-s windows because it provided good accuracy in the least amount of time. We also
demonstrate that using 60-s HMOG windows with SMARTCOPE can outperform HMOG alone with a 120-s authentication windows.

3.1. Experiments setup

To demonstrate SMARTCOPE, we collected data from 48 unique subjects (15 male and 33 female) from a population of mostly
graduate and undergraduate students. During data collection, the subject performed various typing activities, and experienced the
following change of possession events: give, and grab. 26 subjects participated in two data collection sessions, while the remaining
22 subjects took part in one session. This resulted in a total of 74 sessions. Each session ranged from approximately 8 to 15 min with
an average session duration of approximately 12 min. We used two Android smartphones (Google Pixel) to collect the raw sensor
data from the accelerometer and gyroscope while users were typing answers to a series of questions and walking in a hallway. The
smartphone sampled accelerometer and gyroscope signals on three axes at a rate of 100 Hz.

A series of events interrupted users during each data collection session. In each session, the subjects were asked three times
to give the smartphone to the proctor in order to simulate a willful give event. Grabs events were simulated by abruptly taking
the smartphone from the subject, without prior notice. We performed two grab events in each session. To collect data associated
with rest (non-possession), the subjects were asked to play Jenga, which required them to place the smartphone on a nearby table
without receiving any verbal cue. Give, grab, and rest make up the events of interest. Non-event indicates the user continuously
possesses the phone. In our experiments, non-event signals primarily consist of the subject walking and typing answers to questions.

The phone front camera and a separate room camera were used to precisely identify the timing of events and to annotate
the raw signals. In addition to the raw sensor data streams, we calculated acceleration and angular velocity magnitude as 𝑚𝑎𝑔 =
√

𝑥2 + 𝑦2 + 𝑧2. This resulted in a total of 8 signals: two magnitude signals, and six signals measured along the individual axes.
In order to segment and analyze sensor data, we applied a sliding window method. We derived statistical features (see Section 4)

rom the signals to create feature vectors. This technique consists of segmenting the data into fixed frame lengths with a certain
mount of overlap. For example, with 2-s frames and 75% overlap, two consecutive frames are offset by 0.5 s and therefore share
5% of their data.

In human activity research, 50% is by far the most commonly used frame overlap (see for example [33]). However, the events
xamined in this study are shorter than other typical human activities, at approximately 1.5 to 4 s. As a result, both frame length
nd frame overlap had to be adjusted to account for the length of the events. Both frame length and frame overlap are parameters
xplored in the results section.

The ground truth of each frame was determined by finding the event that covers the majority of the frame. Due to the short
ature of the events, a small frame size was necessary for all events to be recognized. From our observations, give and grab events
ended to last between 1.39 s and 5 s. This affects the maximum frame size: if the frame size is set to 3 s, and the grab event
ength is 1.39 s (46.3% of the frame), then the frame would be labeled as non-event. As a result, the frame sizes examined in our
xperiments ranged from 0.5 to 2.5 s, with 0.5-s increments.

We also experimented with various frame overlaps, with percentages that ranged from no overlap to 90% overlap, in 10%
ncrements. Frame length and overlap influence the total number of frames analyzed: as frame length decreases, the amount of
rames increases; and as overlap increases, the number of frames increases.

2 The HMOG dataset is available at https://hmog-dataset.github.io/hmog/
4
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3.2. Evaluation metrics

The SMARTCOPE framework consists of two modules, (1) ‘‘change of possession’’ detection, and (2) biometric authentication. If
change of possession event is detected, a biometric re-authentication event is triggered. We evaluated our change of possession

etection and the combined SMARTCOPE framework composed of change of possession detection and biometric authentication
sing distinct metrics.

We used recall, precision and F1-score as metrics to evaluate the classification performance of our change of possession detection.
orrect classification can be described in terms of True Positives (TP) and True Negatives (TN). Incorrect classification can be
escribed in terms of False Negatives (FN) and False Positives (FP). Recall (also known as sensitivity, or hit rate) is the percentage
f correctly detected activities out of all actual instances of a particular class:

Recall = TP
TP + FN

(1)

Given an actual class, recall determines if the classifier will predict it.
Precision (also known as positive predictive value) measures the likelihood that a detected instance of an activity corresponds

to a real occurrence:

Precision = TP
TP + FP

(2)

Given a class prediction, precision determines how likely is it to be correct.
F-score combines the precision and recall rates into a single measure of performance. The F1-score weighs precision and recall

equally and is defined as the harmonic mean of the two measures.

F1 = 2 ⋅ Recall ⋅ Precision
Recall + Precision

(3)

The F1-score provides insight into the overall effectiveness of the classifier and is useful as a single measure to guide optimization.
We analyzed individual recall and precision scores for all events, with the primary optimizing metric being the grab F1-score.

We also analyzed the influence of frame size and overlap value on recall, precision, and F1-score. The varying combinations of
these parameters allowed for the resulting accuracy to be compared, thus allowing us to identify the ideal combination to be used
in conjunction with a continuous authentication system.

Within the context of continuous authentication, we treat give and grab events as a ‘‘change of possession’’ event class (positive
class), because both events indicate that the user is no longer in possession of the phone. Similarly, rest and non-events were jointly
considered to be non-events (negative class).

With SMARTCOPE, a true positive is recorded when the change of possession detection module accurately identifies a change
of possession event, and the biometric modality successfully identifies the impostor. As a result, the framework’s TPR is TPRCOP ×
TPRbiometrics, where TPRCOP indicates the true positive rate of the ‘‘change of possession’’ detection module, and TPRbiometrics the true
positive rate of the biometric authentication module.

We have a false positive only when the change of possession detection module incorrectly identifies a change of possession event,
and the biometric module incorrectly identifies an impostor. As a result, the FPR of SMARTCOPE is calculated as FPRCOP×FPRbiometric.
In our experiments, we set the threshold for the change of possession detection to maximize TPRCOP. We then varied the threshold
of the biometric component to determine overall TPR and FPR of the combined framework.

To measure the impact of using change of possession detection along with a biometric, we compared the equal error rate (EER)
of SMARTCOPE with that of the underlying biometric modality.

4. ‘‘Change of possession detection’’ experiments

We extracted 24 features from accelerometer and 24 features from gyroscope time-domain signals. For each of the two sensors,
the features consisted in mean, standard deviation (STD), median absolute deviation (MAD), minimum (Min), maximum (Max), and
inter-quartile range (IQR) from the 𝑥, 𝑦, 𝑧, and magnitude components of accelerometer and gyroscope signals. Computation of
these features require minimal resources. As a result, these features are well-suited for energy constrained mobile devices.

We used Random Forest classifier [55], a well-known ensemble method for pattern classification, because of its performance,
speed, resilience against overfitting, ability to handle large feature matrices efficiently, and its ability to deal with unbalanced
datasets. The classifier used is a multi-class classifier trained on four classes: ‘‘give’’, ‘‘grab’’, ‘‘rest’’, or ‘‘non-event’’. The parameters
for Random Forest used in our experiments were 30 learning cycles and 𝑛 − 1 maximum splits, where 𝑛 is the number of frames in
the training set.

We divided each session into fixed-length frames. Within each frame, data is viewed as a series of equal-length time intervals,
and the dominant activity during that time is the label for that frame [56]. The evaluation determines whether the predicted label
of a frame matches the corresponding ground truth. Consecutive frames are allowed to overlap. Depending on frame length and
frame overlap, an event might occur in multiple frames.

Frame analysis is susceptible to multiple types of errors, including fragmentation, substitution, overfill, and under-fill [57].
Fragmentation errors occur when activity segments in the ground truth correspond to several segments in the recognition system
output [34]. Substitution errors occur when a frame is incorrectly identified as another event but is temporally correct. Overfill and
5
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Table 1
Frame analysis of a ‘‘give’’ event showing an example of underfill that does not affect the
detection of the event. In this example, frames 1 and 6, are correctly classified. Frames 2 to 5
have a ground truth of ‘‘give’’, but only frames 3 and 4 are identified correctly. Despite underfill,
in practice our activity detection system would correctly determine that a ‘‘give’’ event happened
within these frames.
Frame Actual event Predicted Hit/Miss

1 Non-event Non-event Hit
2 Give Non-event Miss
3 Give Give Hit
4 Give Give Hit
5 Give Non-event Miss
6 Non-event Non-event Hit

Fig. 1. Grab F1-scores with 2.5-s frames.

Table 1 shows an example of under-fill for the frame analysis of a give event. The first and last frame of the ‘‘give’’ event (frames
2 and 5) are labeled as ‘‘non-event’’, thus resulting in a boundary correspondence error.

In order to capture an event as it happens over time, we analyzed blocks of 20 consecutive frames. We set a threshold (𝑚) for
the number of frames within a block. If the number of frames exceeding this threshold in the block resulted in a positive event
(give, grab), the entire block was considered as that event. With a threshold of 1, if any of the frames in the block were to be
classified as either give, grab, or rest, the entire block would be labeled as the corresponding event. Looking at a block of frames
allows the classification model to label events correctly despite small boundary correspondence issues. We determined that based
on the F1-scores across multiple threshold values, the best threshold of frames to be set to 𝑚 = 1. Fig. 1 shows how F1-scores vary
for 𝑚 = 1 and 𝑚 = 2 with different frame overlaps.

In our analysis, when two or more frames within a block were classified as different events (e.g., the first as give, and the second
as grab), we classified the entire block using the following hierarchy: grab > give > rest. This means that if any of the frames was
classified as grab, the entire block would be classified as grab, and so on. This hierarchy was chosen because it is more important
to correctly detect a grab event than a give event, and so on. This is due to the fact that, in general, the cost of a false negative for
a grab event is higher than the cost of a false negative for a give event.

In order to increase generalization and validity of our results, we ran 20 trials. Each trial consisted of randomly assigning users
to either training or testing data. For each trial, each combination of the parameters (frame size and frame overlap) were used
to create a classification model. These parameters were chosen as they best represented the occurrence of a change of possession
event. The classifier was trained 3 times using random forest algorithm with 5-fold cross validation on 75% of the data to create a
frame-based predictor. A 𝑘 value of 5 in 𝑘-fold cross validation uses 20% of the training data for validation and has been shown to
produce results that do not exhibit excessively high bias or very high variance [58]. Due to the stochastic nature of a classification
system that uses randomization, we used the average metrics of the three models to reduce variance. Each model is evaluated on the
remaining 25% of the data (test set). For each combination of parameters, we report the average of recall, precision, and F1-score
6

of 20 trials for grab, give, rest, and non-event.
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Table 2
Experiment results with 2.5 s frames with 70% overlap.

Event Precision (%) Recall (%) F1-score (%)

Grab 79.4 86.5 83
Give 83.3 74.6 78
Rest 86.5 74.9 79
Non-event 96 97.7 97

Fig. 2. Grab and give F1-scores at a frame length of 2.5 s, varying overlap.

5. Results

In this section we introduce the results of our experiments. We first discuss how frame size and overlap impacts change of
possession detection accuracies (see Section 5.1). We then present authentication results for change of possession detection combined
with the HMOG results [17] in Section 5.2. In Section 5.3 we present the results of change of possession detection results combined
with CloudWalk MT 007 results [54]. The change of possession results are based on the dataset that we collected as part of this
work (see Section 3.1).

5.1. Impact of frame size and overlap on change of possession detection

To evaluate our change of possession detection component, we analyzed combinations of frame lengths between 0.5 and 2.5 s,
and overlaps between 0% and 90% with 10% increments. For frame size of 2.5 s, and overlap from 50% to 80%, we obtained
F1-scores of at least 80% for all events examined. The average precision, recall, and F1-score of the 20 trials for each event at a
frame size of 2.5 s and an overlap of 70% are shown in Table 2.

Some parameter combinations characterized by frame overlaps outside the 50%–80% range, and by frame sizes other than 2.5 s,
led to either higher precision or recall for some of the events, or higher F1-score for non-events or give events. However, because
our goal is to optimize for grab F1-score, we report parameters that maximize the results under this metric.

Generally, a higher overlap leads to higher F1-score. However, F1-scores for both give and grab events start to degrade once
frame overlap reaches 80%. An overlap of 90% led to a significant drop in performance for all parameter configurations. Give and
grab F1-scores with 2.5-s frame length are shown in Fig. 2, while Fig. 3 shows the relationship between frame length and F1-scores.
In our experiments, the only frame length that consistently produced F1-scores above 0.8 for all events was 2.5 s.

To evaluate the performance of SMARTCOPE, we used 70% overlap with a 2.5-s window frame. We chose these parameters
because they produced consistently good accuracies. Because the classifier used for change of possession is stochastic, we selected
a representative instance as follows. From each training instance, we generated 60 ROC curves and calculated the corresponding
7

areas under the curve (AUC). We then selected the instance with the median AUC. The resulting ROC is represented in Fig. 4.
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Fig. 3. F1-scores for top performing models at each frame length. A frame length of 2.5 s produces F1-scores above 0.8 for all activities of interest.

Fig. 4. The ROC curve plotted for the median trial for change of possession detection.

5.2. SMARTCOPE and HMOG

In this section we combine the results from the parameters selected in Section 5.1 parameters for change of possession detection
with the results reported by Sitová et al. [17] with 60-s authentication intervals in the walking setting. Fig. 5 shows the resulting
ROC curve, together with the ROC curve for HMOG. Our results show that SMARTCOPE leads to a meaningful improvement
in overall accuracy. Specifically, EER improved from 7.8% to 4.6%—a decrease of over 40%. The advantage in performance of
SMARTCOPE compared to the underlying biometric modality alone degrades as the TPR increases. The crossover point, however, is
at around 31% FPR. This means that for all reasonable production settings, SMARTCOPE outperforms HMOG alone. Additionally,
using SMARTCOPE with a 60-s HMOG window we were able to outperform HMOG alone with a 120 s window (7.16% EER).

5.3. SMARTCOPE and CloudWalk MT 007

We evaluated SMARTCOPE using the results for CloudWalk MT 007 face recognition with the ‘‘Visa Border’’ image set [54].
The goal, in this case, is not to improve the accuracy of this biometric modality—as with HMOG. Rather, the goal is to transform
a static (login-time) biometric modality into a continuous-like or periodic authentication system. In the case of a static biometric,
both TPR and FPR are 0% post-login, because the biometric modality is simply not triggered at periodic intervals within a session.
In contrast, our results show that in the same setting SMARTCOPE is able to achieve an EER of 3.5%. That is, CloudWalk MT 007
used for login-time authentication has an EER of about 0.1% and when it is used for periodic authentication using SMARTCOPE is
able to achieve EER of 3.5%. When using SMARTCOPE with CloudWalk MT 007, we were also able to achieve 3.55% false accept
rate with 0.11% false reject rate.
8
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Fig. 5. The SMARTCOPE ROC curve plotted together with the ROC curve for HMOG and touch/keystroke dynamics (TKD) with 60 s authentication windows
hile walking (reproduced from [17]), along with the respective equal error rates.

. Discussion and open problems

While our paper demonstrates the utility of SMARTCOPE as a proof of concept, further investigation is needed to address the
ollowing outstanding issues.

dentifying change of possession intent. While our work considers both ‘‘give’’ and ‘‘grab’’ events as adversarial, it is also possible
o consider give as a benign event, and grab as a malicious event. This allows a fine-grained security response to a change of
ossession event. For instance, in case of a ‘‘give’’ event, SMARTCOPE could lock sensitive applications (e.g., a banking app) while
eaving less-sensitive applications (e.g., a photo app) unlocked.

Another promising avenue is to use different biometrics modalities as a response to different change of possession events. For
xample, behavioral authentication could be used as a non-intrusive and passive biometric option when a ‘‘give’’ event is detected,
hile face recognition could be used in response to ‘‘grab’’ events. Further, depending on environment conditions (e.g., low light),
lternative biometric modalities, such as fingerprint recognition, could be used to authenticate the user after a ‘‘grab’’ event.

sability of SMARTCOPE. We believe that it would be meaningful for future work to address the usability of SMARTCOPE using a
ataset collected in the field that incorporates information about users perception. This dataset could be used to compare the usability
f SMARTCOPE with that of other context-driven continuous authentication systems under realistic operational conditions.

ecognition performance of rest events. The goal of this paper is to focus on identifying events that indicate adversarial change of
ossession. For this reason, we optimized our classifiers to detect ‘‘give’’ and ‘‘grab’’ events. As a result, the detection accuracy of

‘rest’’ events was impacted. We believe that this is a reasonable tradeoff, given the focus of our paper. However, for use cases where
igher classification accuracies for ‘‘rest’’ events are needed, a standard thresholding approach over accelerometer signals can be
sed.

arnessing the ‘‘rest’’ state. When a smartphone transitions from the resting state to an active state, SMARTCOPE could trigger
uthentication because the smartphone is unable to determine who picked it up. This approach could be instrumental in preventing
nauthorized access when the device is momentarily left unattended.

. Conclusion

In this paper we introduced a novel framework for continuous authentication based on the detection of change of possession.
he latter represents a novel activity recognition problem that focuses on determining when a user lost possession of their device

n the middle of a session, i.e., post-authentication.
Our results show two important findings. First, we demonstrated that combining change of possession with a behavioral biometric

odality leads to a significant improvement in authentication accuracies. By combining HMOG [17] with change of possession, we
ere able to reduce the EER by over 40%, from 7.8 to 4.6%. Second, we showed that combining change of possession with a
hysiological biometric modality allows the resulting system to authenticate the user as soon as an adversarial event is detected,
hile at the same time having a negligible impact on the overall FNR. In particular, when combined with the CloudWalk MT
07 [54] face recognition model the resulting EER was 3.5%, which is remarkably low for a continuous authentication system.

We believe that this work is important because it provides a general framework for either improving the performance of
ehavioral biometrics, thus making them suitable for wider adoption, or for allowing re-authentication via physiological biometrics
ost-authentication.
9
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