
Deniable Cloud Storage: Sharing Files via
Public-key Deniability

Paolo Gasti
University of Genoa

Genoa, Italy

gasti@disi.unige.it

Giuseppe Ateniese
Johns Hopkins University

Baltimore, MD, USA
ateniese@cs.jhu.edu

Marina Blanton
University of Notre Dame

Notre Dame, IN, USA
mblanton@cse.nd.edu

ABSTRACT

Cloud computing provides users with ample computing resources,
storage, and bandwidth to meet their computing needs, often at
minimal cost. As such services become popular and available to a
larger body of users, security mechanisms become an integral part
of them. Conventional means for protecting data privacy, such as
encryption, can protect communication and stored data from unau-
thorized access including the service provider itself. Such tools,
however, are not sufficient against powerful adversaries who can
force users into opening their encrypted content. In this work we
introduce the concept of deniable cloud storage that guarantees pri-
vacy of data even when one’s communication and storage can be
opened by an adversary. We show that existing techniques and sys-
tems do not adequately solve this problem. We design the first
sender-and-receiver deniable public-key encryption scheme that is
both practical and is built from standard tools. Furthermore, we
treat practical aspects of user collaboration and provide an imple-
mentation of a deniable shared file system, DenFS.

Categories and Subject Descriptors

E.3 [Data Encryption]: Public Key Cryptosystems

General Terms

Algorithms, Security

1. INTRODUCTION
The goal of cloud computing is to provide CPU, storage, net-

work bandwidth and virtually unlimited scalability at low cost. In
addition, cloud services provide full availability, i.e., users can ac-
cess their data from any connected machine. Cloud users do not
need to worry about backups or unexpected costs: if a component
fails, it is the provider’s responsibility to replace it and make the
data available using replicas [18]. Armbrust et al. [2] identify three
aspects which characterize cloud computing: 1) the illusion of in-
finite computing resources available on demand, and therefore the
elimination of the need to plan ahead for provisioning; 2) the elim-
ination of an up-front commitment by users; and 3) the ability to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0096-4/10/10 ...$10.00.

pay for use of computing resources on a short-term basis as needed.
Cloud computing is said to maximize benefits of scale [2, 28].

Amazon’s Simple Storage Service (S3) [22] is among the best-
known storage providers, and is used by other service providers to
store customers’ data and by end users. A notable example of ser-
vice provider relying on S3 is Dropbox [24], which provides seam-
less file synchronization with an on-line repository and across dif-
ferent computers, together with an easy interface for sharing docu-
ments with other users. Dropbox is a very powerful tool for collab-
oration: users do not suffer delays introduced by the network, since
they always access a local copy; updates are sent and received in
background and users are quickly notified when the content of a
shared file changes.

With cloud storage services, encryption becomes crucial to pro-
tect data privacy, at least because the cloud provider has full access
to users’ data. It is recent news that Google provided the FBI all
the documents of one of its users after receiving a search warrant.
What is unusual is that that user was not notified of the warrant and
was not aware of the search until he was arrested [29].

The goal of traditional encryption is to preserve privacy of data
communication or storage in the presence of passive adversaries.
Deniable encryption, on the other hand, was introduced by Canetti
et al. [6] as a mechanism for maintaining data privacy in the pres-
ence of active adversaries who have the ability to coerce data
senders or recipients into opening observed ciphertexts. That is, af-
ter observing a ciphertext, an adversary approaches the sender and
asks her to reveal the random choices or keys used in generating
the ciphertext, which expose the corresponding plaintext. A deni-
able encryption scheme then has a property that allows the sender
to open the ciphertext in such a way as to reveal a different plaintext
than the one originally used in producing the ciphertext. The type
of deniable encryption resilient to sender coercion is called sender-

deniable encryption, and receiver-deniable encryption achieves de-
niability when the ciphertext recipient is coerced into opening it.
Then sender-and-receiver deniable schemes combine both of the
above properties. We refer to the plaintext intended for the recipi-
ent as the real message and the plaintext that the coercer sees after
opening the ciphertext as the fake message.

Deniable encryption can be divided into two types: plan-ahead

and ad-hoc encryption. The former requires the sender to choose
both the real and fake messages at the time of encryption, while the
latter permits the fake message to be chosen at the time of coercion
(from the entire message space). Currently, the only known con-
structions for ad-hoc deniable encryption correspond to the public-
key setting and achieve sender-deniability.1 Such constructions are
inefficient as they require one (public-key) ciphertext per message

1One-time pad and the work of Ibrahim [14] are exceptions; see
section 2 for details.

bit [6, 16, 13], or allow several message bits per ciphertext, but the
ciphertext size is still exponential in the number of message bits
transmitted [13]. Since our goal is to seek a practical solution, we
concentrate on plan-ahead deniability. In particular, we are con-
cerned with practical applications of deniable encryption and con-
sider the following scenario as our target functionality: an adver-
sary obtains access to a laptop computer, the owner of which keeps
the stored data encrypted. Some of the encrypted data is shared,
using a cloud service, with one or more collaborating users; file
updates are exchanged over the Internet. The adversary, who may
have intercepted the updates, may have injected new files and may
have reconstructed multiple snapshots of the encrypted data, forces
the owner to decrypt the content of the hard drive by revealing any
key material and necessary auxiliary information.

The original formulation of deniable encryption assumes that an
adversary captures only communication traffic. We, however, view
as one of the most prominent uses of deniable encryption the case
where encrypted contents are stored on a laptop or a desktop com-
puter and on a remote server as well, and the adversary forces the
owner of the machine to unlock its encrypted contents. This means
that the only information that can stay hidden is a small secret, such
as a decryption key, that the owner of the machine can hide from
the coercer. Note that existing deniable encryption schemes do not
necessarily work in this context since extra information must be
stored in order to be able to open a ciphertext to a fake value. Once
this additional information is provided to the coercer, he can use it
to uncover the original message. We would like the owner to have
the ability to open the data in two different ways through a usable
mechanism, e.g., by entering a password that will unlock the key
material and decrypt the data.

Considering that certain encryption algorithms are well-known,
widely accepted and used in practice, it would be desirable to use
such algorithms, if possible, instead of custom-built schemes to
achieve wider adoption of deniable encryption. Since the conven-
tional encryption schemes are not deniable, the existing deniable
encryption schemes normally do not use standard tools. One of
our goal, however, is to explore what deniability properties can be
achieved with conventional encryption schemes.

Contributions: First, we construct a sender-deniable plan-ahead
public key encryption scheme using RSA-OAEP [3] and the
Damgård-Jurik generalization [9] of Paillier’s encryption scheme
[19] as building blocks. Then we extend it to provide
non-interactive sender-and-receiver deniable plan-ahead public-key
encryption. Finally, we show how to efficiently construct a public-
key deniable encryption scheme using any IND-CPA encryption
scheme as a black box. Our constructions have a high throughput
(i.e., linear in the size of the ciphertext) for messages that can be de-
niably communicated. An essential component of this work is the
design and implementation of DenFS, a distributed file system that
allows a group of collaborators seeking deniability to view, edit,
and exchange documents as if they were working on a standard file
system. Finally, in the appendix we give extensions to our work
that allow us to increase the bandwidth of the deniable channel and
provide other efficiency improvements.

Deniability in practice. TrueCrypt [25] is a widely used disk en-
cryption tool that provides deniability in the form of a deniable
file system. TrueCrypt refers to a deniable file system as a hidden

volume, which is created inside a non-deniable encrypted disk im-
age, using the space marked as not allocated by the file system. To
mount the hidden volume, a user must first provide the password
to decrypt the non-deniable file system and then provide a second
password to decrypt and mount the hidden volume. If the second
password is not known, the unallocated space is indistinguishable

from random data [26]. Since TrueCrypt always fills the unallo-
cated space with random data, the existence of the hidden volume
can be denied. Czeskis et al. examine in [8] the efficacy with which
TrueCrypt v5.1a provides deniability. They found that Microsoft
Windows and several common applications and utilities compro-
mise the deniability of TrueCrypt hidden volumes. As an example,
Windows keeps track of the serial number of each volume it mounts
and also creates a link to recently opened documents. Both these
features clearly compromise the deniability of a hidden volume. As
with other deniable file system implementations, we assume that
the OS and application are aware of such property of the file sys-
tem and avoid to keep track of the content of the deniable files. This
assumption allows us to consider the security of our proposal alone,
alleviating the need to examine the whole system. From a practi-
cal point of view, however, we show that our deniable filesystem is
immune to some of the attacks illustrated by Czeskis et al., while
the impact of the remaining threats can be mitigated as discussed
in section 4.

Assange and Weinmann introduced a deniable file system called
Rubberhose [23], which transparently encrypts data on a storage
device and allows users to hide that encrypted data. Rubberhose
needs a dedicated hard disk and creates several partitions, encrypted
with a different passphrase, in which blocks are not contiguous, but
scattered in a pseudorandom manner across the drive.

Anderson et al. [1] proposed two deniable file systems schemes,
which they call steganographic file systems (stegfs). The first ini-
tializes the disk with a large number of cover files which contain
random data. Deniable files are stored as the XOR of subsets of
the cover files, which are identified by a secret key. The main dis-
advantage of this file system is the high overhead associated with
each read and write operation. With their second scheme, the disk
is filled with random data and the deniable files are written at ran-
dom positions; the likelihood of overwriting hidden data increases
with the amount of information stored on the disk. The schemes
of Anderson et al. are vulnerable against an adversary who can ob-
tain multiple different copies of the encrypted content of the disk
(snapshots) over a period of time.

In order to avoid the problem of data collisions in the scheme
of Anderson et al., Pang et al. [20] proposed the use of a bitmap
to track block allocation. Dummy data are added when the disk is
formatted to provide deniability. Since dummy data cannot be re-
allocated without formatting the disk, an adversary who can access
multiple snapshots of the disk can easily break the deniability of
the scheme. This problem was addressed by Zhou et al. [31]. Their
solution requires the use of a trusted agent to manage the dummy
data. To perform this task, the trusted agent needs to know the
password used to protect the deniable files.

Unfortunately, none of the available deniable file systems pro-
vide a solution for the scenario proposed earlier in this section,
where an adversary obtains access to a laptop and also records com-
munication. In particular, none of the existing schemes can be ap-
plied to the cloud environment. In this scenario we further assume
that a malicious cloud provider has complete control over the user’s
data. Moreover, all these file systems require users to share a se-
cret key, which may not be always possible and severely limits the
flexibility of the file system, as discussed in section 4.

2. BACKGROUND AND DEFINITIONS
In this section we first review related work and then proceed with

defining the model. Canetti et al. [6] introduced the notion of deni-
able encryption and gave several constructions for sender-deniable
encryption. In particular, their work shows that public-key sender-
deniable ad-hoc encryption can be built from translucent sets and
trapdoor permutation, where each ciphertext encodes a single bit.
It also reports that a shared-key sender-deniable plan-ahead en-
cryption can be constructed by either concatenating encryptions of
several messages under different keys (and thus increasing the ci-
phertext size) or sharing a key proportional in size to the message
length. Additionally, [6] shows that sender-deniable encryption
can be converted to receiver-deniable encryption (or vice versa) us-
ing an extra round of communication; namely, the receiver uses a
sender-deniable scheme to transmit encryption of a random bit r to
the sender, and the sender transmit b⊕r to the receiver in the clear,
where bit b is the actual message to be transmitted. This interactive
solution, however, is not applicable to the scenario of encrypted
storage considered in this work.

Ibrahim [13] gives ad-hoc sender-deniable public-key encryption
schemes based on the hardness of the quadratic residuosity problem
for N , which is a product of two large primes. The first scheme
allows transmission of one bit per ciphertext. The second scheme
can transmit more than one message bits per ciphertext, but only
a small number of such bits (ciphertext size is exponential in the
message length).

In [14] Ibrahim gives an ad-hoc receiver-deniable public-key
scheme, which has higher bandwidth than other ad-hoc deniable
schemes. The scheme is based on RSA and 1-out-of-n oblivious
transfer, and permits transmission of messages of logN − δ bits
long with ciphertexts of size 2 logN , where N is the RSA modu-
lus and δ is a randomizing string (e.g., 128 bits long). This solution,
however, requires usage of mediated RSA, where a user does not
have full knowledge of her secret key, i.e., each private key is split
between the owner of the key and a third party. This means that
such a solution has a limited applicability and will not work in our
setting. Additionally, this solution relies on trusted hardware.

A recent work of Klonowski et al. [16] extends the ad-hoc sender-
deniable public-key scheme of Canetti et al. through a nested con-
struction. The authors also show how hidden messages can be
transmitted using standard ElGamal encryption, which achieves the
functionality of plan-ahead receiver-deniable encryption. In partic-
ular, the sender and receiver share a secret S, and the sender also
has access to the receiver’s private key (associated with the public
key the encryption scheme uses). This allows a ciphertext to en-
code, besides a fake message, an additional secret message of the
same size. In fact, this provides a broad-band subliminal channel if
the receiver is willing to trust the sender with her private key. Meng
and Wang [17] extent the idea of Klonowski et al. [16] providing
a receiver deniable encryption scheme based on BCP commitment
scheme of Bresson et al. [5]. Their scheme does not require sender
and receiver to exchange any pre-encryption information.

To summarize, existing public-key constructions are either flex-
ible, but inefficient or are able to communicate several secret bits
and use standard tools, but require the recipient to give up its pri-
vate key. Furthermore, all suitable solutions are sender-deniable
and therefore are not applicable to the problem of deniable stor-
age. The motivation of this work thus comes from a usability per-
spective: can we design an efficient solution that does not require
revealing the private key of the receiver? Can we achieve receiver-
deniability without using mediated settings?

Following Klonowski et al., we investigate communication of
hidden messages by means of an additional channel. That is, a ci-

phertext always encodes a fake message and can additionally con-
tain a real hidden message. Furthermore, the assumption that the
sender and the receiver share a secret appears powerful, and we
investigate what can be achieved without this assumption.

The original definitions of deniable encryption in [6] are stated
in terms of computational indistinguishability of views associated
with real and fake messages. In particular, after encryption of real
message m is transmitted, the so-called faking algorithm allows it
to be opened to reveal a fake message mf . The security require-
ment is such that, given any messages m1 and m2, the encryption
of m1 is computationally indistinguishable from the encryption of
m2. Additionally, the deniability property requires that the view of
the adversary, that includes communication of the ciphertext c cor-
responding to the encryption of m, the random choices calculated
by the faking algorithm and the opening to mf of the ciphertext,
is indistinguishable from communication of encryption of mf , its
opening and the random choices used to encrypt it. Sender (re-
ceiver) deniability means that the sender (resp., receiver) reveals
her random choices/keys upon coercion. The definition of a (plan-
ahead) deniable public-key encryption is strictly stronger than the
standard definition of CPA-security, i.e., deniability also implies
CPA-security.

In this work, we define deniable encryption as the ability to hide
the presence of the real message: the adversary’s view when trans-
mitting a fake message with a hidden real message should be indis-
tinguishable from the case when no hidden message is included.

DEFINITION 1. A (plan-ahead) deniable public-key encryption

scheme consists of the following four efficient algorithms:

• Setup : a probabilistic algorithm that, on input a security

parameter 1κ, outputs (pk, sk) ∈ Kpub ×Kpri. The private

key space Kpri consists of two partitions, K+

pri and K−
pri

• Enc : a probabilistic algorithm that, on input pk and mes-

sages mf and m, outputs a ciphertext C(mf ;m). We explic-

itly denote by r the random choices made by this algorithm.

• Dec : a deterministic algorithm that, on input (pk, sk) and

ciphertext C, outputs message mf encoded in the ciphertext.

Dec also outputs m iff sk ∈ K+

pri

• Open : a deterministic algorithm that on input a ciphertext

C and public key pk, outputs private information PI that

opens the encryption to message mf .

In the above, what the opening algorithm outputs depends on what
party is coerced into opening the encryption. If it is the sender, PI
can consist of random choices r used in ciphertext generation. For
this reason Enc stores all its random choices in a system-wide table
accessible by Open. If the receiver is opening the ciphertext, PI
can consist of the private key sk. Finally, if both of them are to
open the ciphertext, the information PI available to the adversary
will consist of the union of the sender’s and receiver’s information.
When Open is invoked by the sender, we denote it by OpenS , and
when it is invoked by the receiver, it is denoted by OpenR.

Let D = (Setup,Enc,Dec,OpenS ,OpenR) be a deniable
public-key encryption scheme, where (pk, sk)← Setup(1κ). The
security properties required by D are inspired by the security def-
inition in [6], adapted to our setting. However, instead of using
definitions based on computational indistinguishability of the view
of the adversary, we provide a rigorous definition of (public-key)
deniability in terms of interactive experiments.

When discussing sender deniability, we assume that a coercer
can guess who the intended recipient of the transmission is (e.g., if
the message is communicated via email, recipient identity can be
deduced from the transmission). Thus, the sender has to use the
true recipient’s public key during the opening phase.

We define the security requirement of a (plan-ahead) deniable
public-key encryption scheme by adapting the standard definition
of IND-CPA to our setup. Let E = (Gen,E,D) denote a public-
key encryption scheme where Gen, E and D are polynomial-time
algorithms defined in the standard way (in particular, Gen and E
are probabilistic algorithms while D is deterministic). Given a pub-
lic key pk generated by Gen, we will denote byMpk and Cpk the
message and ciphertext spaces defined by pk. In addition, for sim-
plicity and without loss of generality, we assume that messages in
Mpk and ciphertexts in Cpk, respectively, have all the same size.
We next state the properties of an encryption scheme we rely on.
Consider the IND-CPA experiment defined as follows:

Experiment IND-CPAA,E(κ)

1. Run (pk, sk)← Gen(1κ).
2. Adversary A is given pk and eventually outputs two mes-

sages m0,m1 ∈Mpk of its choice.
3. A random bit b is drawn and the encryption Epk(mb) is re-

turned to A.
4. A outputs bit b′, and the experiment outputs 1 iff b = b′.

DEFINITION 2 (IND-CPA SECURITY). An encryption scheme

E = (Gen,E,D) has indistinguishable encryptions under chosen

plaintext attack if there exists a negligible function negl such that

for any probabilistic polynomial time A, Pr[IND-CPAA,E(κ) =
1] ≤ 1/2 + negl(κ).

Recall that in a plan-ahead deniable encryption scheme D a cipher-
text can encrypt a fake and a real messages or just the fake message.
Let C(mf ;m) denote a ciphertext that encrypts both of them, and
C(mf ;−) denote a ciphertext that encrypts only mf . The above
IND-CPA experiment for D will then mean that in step 2 A out-
puts two pairs of messages (mf,0,m0), (mf,1,m1) ∈ Mpk and
obtains Enc(mf,b,mb, pk) = C(mf,b;mb) in step 3. Note that
one of messages m0 and m1 or both of them can be −.

We also provide the definition of sampleable ciphertext space,
which will be used to construct our schemes:

DEFINITION 3 (SAMPLEABLE). An encryption scheme E =
(Gen,E,D) has sampleable ciphertext space if there exists a poly-

nomial time (in κ) algorithm such that, on input pk (produced by

Gen(1κ)), can choose an element of Cpk with the same distribution

the algorithm Epk(·) produces on a fixed message m.

Note that when the encryption scheme E is IND-CPA-secure, the
above definition will imply that the distribution of ciphertexts
Epk(m) is computationally indistinguishable from the distribution
of ciphertexts Epk(m

′) for m 6= m′. Then we can sample the
ciphertext space by creating Epk(m), and the view will be indis-
tinguishable from the distribution of encryptions of other messages.

Unlike prior literature, we specify deniability using interactive
experiments to more precisely capture the adversary’s abilities. We
define the experiment for sender-deniability of deniable encryption
scheme D = (Setup,Enc,Dec,OpenS) as follows:

Experiment SDenA,D(κ)

1. Set a system-wide table T initially empty.
2. Run (pk, sk)← Setup(1κ).
3. Adversary A is given pk and oracle access to OpenS(·, pk)

and to Enc(·, ·, pk). Eventually A outputs a message pair
(mf , m), with |mf | = |m|.

4. A random bit b
R
← {0, 1} is drawn; if b = 0, A is given

C(mf ;m), and if b = 1, A is given C(mf ;−).
5. A continues to have access to OpenS(·, pk) and Enc(·, ·, pk).
6. A outputs bit b′, and the experiment outputs 1 iff b = b′.

Enc(mf ,m, pk) :

1. Compute C(mf ;m).
2. Store the tuple (mf ,m,C(mf ;m), r) in T , where r denotes

the set of the random choices used during the encryption.
3. Output C(mf ;m).

OpenS(C, pk) :

1. If C is in T return the tuple (mf ,m,C, r).
2. If C is the challenge ciphertext, return the random choices

derived from r to open C as an encryption of (mf ;−), re-
gardless of whether C = C(mf ;m) or C = C(mf ;−).

3. Otherwise return ⊥.

Note that we allow the adversary to open any ciphertext including
the challenge ciphertext (produced on a message of its choice).

A more detailed explanation of this definition is in order. The
adversary A is given access to an opening oracle and an encryption
oracle under the public key pk. Note that even though the definition
is for public-key encryption schemes we still provide access to an
encryption oracle to model the ability of the coercer to choose ar-
bitrary messages (mf , m), have them encrypted by the sender, and
have the sender reveal the random choices used in the encryption.

DEFINITION 4. A public-key encryption scheme D is sender-
deniable if there exists a negligible function negl such that for any

probabilistic polynomial time (PPT) A, Pr[SDenA,D(κ) = 1] ≤
1/2 + negl(κ).

The experiment for receiver-deniability of a deniable encryption
scheme D = (Setup,Enc,Dec,OpenR) is defined as follows:

Experiment RDenA,D(κ)

1. Run (pk, sk)← Setup(1κ).
2. A is given pk and oracle access to OpenR(·, pk) and even-

tually outputs a message pair (mf ,m), with |mf | = |m|.

3. A random bit b
R
← {0, 1} is drawn; if b = 0, A is given

C(mf ;m), and if b = 1,A is given C(mf ;−).
4. Adversary A continues to have access to OpenR(·, pk).
5. A outputs bit b′, and the experiment outputs 1 iff b = b′.

By allowing the adversary to have oracle access to OpenR, we
make it very powerful. In particular, for existing receiver-
deniable constructions, calling OpenR once will give the adversary
access to the private decryption key sk. In practice, once a receiver
is coerced and reveals the private key, the key pair should no longer
be used and a new key will be generated. We, however, grant the
adversary this level of power to show that, even after revealing the
private key, the real message m remains hidden.

DEFINITION 5. A public-key encryption scheme D is receiver-
deniable if there exists a negligible function negl such that for any

PPT A, Pr[RDenA,D(κ) = 1] ≤ 1/2 + negl(κ).

Additionally, we say that a public-key encryption scheme D is
sender-and-receiver deniable if it satisfies the requirements for both
sender deniability and receiver deniability.

We emphasize that, in this paper, we are not considering adver-
saries with access to a decryption oracle.

3. DENIABLE ENCRYPTION

FROM STANDARD TOOLS

3.1 A Sender-deniable Solution
First we propose an efficient sender-deniable encryption scheme,

then we extend it to provide sender-and-receiver deniability. We de-
note with Ē(N, e,m) and D̄(N, d, c) the encryption of message m

using RSA-OAEP [3] with public key (N, e) and the decryption of
the ciphertext c with the private key (N, d), i.e., Ē(N, e,m) =
(OAEP(m))e mod N and D̄(N, d, c) = OAEP−1(cd mod N).
RSA-OAEP is IND-CCA-secure (and therefore it is also IND-CPA-
secure). When the OAEP padding is removed, the result is either
the plaintext m if the ciphertext is valid or ⊥ otherwise. We base
our solution on an efficient generalization of Paillier’s probabilistic
public key system [19] introduced by Damgård-Jurik in [9].

Setup: On input a security parameter 1κ, choose an RSA modulus
N = pq of length κ bits, with p ≡ q ≡ 3 (mod 4) and gcd(p −
1, q − 1) = 2. Set λ = (p − 1)(q − 1)/2, i.e., λ is the least
common multiple of p − 1 and q − 1. Then choose a value e such
that gcd(e, λ) = 1 and calculate d such that e · d ≡ 1 mod λ. The
public key is pk = (N, e) and the secret key is sk = (λ, d, p, q).

Enc: Given a public key pk = (N, e), the sender forms a ciphertext
as follows, depending on whether deniability is used or not: To
deniably transmit a message m along with an innocent-looking fake
message mf < Ns, the sender computes

Enc(pk,mf ,m) = ((1 +N)mf) · (Ē(N, e,m))N
s

mod Ns+1

To transmit a message mf without the ability to deny it, the sender
picks a random r from Z∗

N and forms the encryption as

Enc(pk,mf ,−) = ((1 +N)mf) · rN
s

mod Ns+1

Dec: Given a ciphertext c, the recipient with the public key pk =
(N, e) and the private key sk = (λ, d, p, q) proceeds as follows:

1. Calculate v = cλ mod Ns+1, i.e., (1+N)m
′

fλ mod Ns+1.
2. Use the technique described in [9] to compute mfλ mod Ns

from v and multiply it by λ−1 mod Ns to obtain mf .
3. Using p and q, calculate d′ such that d′ ·Ns ≡ 1 mod λ.
4. Compute c′ = c mod N . If c = (1+N)a ·bN

s

mod Ns+1,

then c mod N = (1 +N)a · bN
s

mod N = bN
s

mod N .

5. Compute m′ = D̄(N, d, c′d
′

mod N). If m′ 6=⊥, set m =
m′, else set m = −.

6. Return (mf , m).

OpenS : Suppose a coercer obtains a ciphertext c generated by
the sender and requests its opening. Given the public key pk =
(N, e), the sender reveals mf . If the ciphertext was encrypted as
Enc(pk,mf ,−) then the sender outputs r as the random choices.
Analogously, if the ciphertext was obtained as Enc(pk,mf ,m)
then the sender simply outputs Ē(N, e,m) mod N as the random
choices.

THEOREM 1. Assuming that both the scheme of Damgård-Jurik

and RSA-OAEP are IND-CPA-secure encryption schemes, the

scheme above is sender-deniable.

PROOF. In order to prove that our scheme is sender-deniable,
we need to show that an adversary A which separately plays the
IND-CPA experiment (for the security property) and the sender

deniability experiment (for the deniability property) can have only
negligible advantage in having any of the experiments to output 1,
i.e. it has a negligible advantage in wining any of the experiments.

Security We show that there is no adversary with non-negligible
advantage in breaking the IND-CPA security of our scheme through
a sequence of experiments.

Experiment 0 This experiment is the standard IND-CPA experi-
ment, i.e., the adversary A receives a public key pk = (N, e) and
outputs two messages (m0,f ,m0) and (m1,f ,m1). The challenger
picks a random bit b and sends the encryption of (mb,f ,mb) to A.
A eventually outputs a bit b′. By definition we have that

Pr[win0] = Pr[IND-CPAA,D(κ) = 1]

Experiment 1 In this experiment we modify the way the chal-
lenger constructs the challenge ciphertext. In particular, it con-
structs the challenge ciphertext as C = ((1+N)mf) · (r)N

s

mod
Ns+1 where r ← Z∗

N . The adversary can only distinguish Experi-
ment 1 from Experiment 0 with negligible probability, since in the
random oracle model the ciphertexts of RSA-OAEP are distributed
as random elements in Z∗

N for a PPT adversary. Therefore there
exists a negligible function negl0 such that

|Pr[win0]− Pr[win1]| ≤ negl0(κ)

Experiment 2 In this experiment we further modify the way the
challenger constructs the ciphertext. Here the challenge ciphertext
C is chosen as the encryption of a random element inMpk. Since
the scheme of Damgård-Jurik is IND-CPA-secure,A has only neg-
ligible advantage in noticing that it is playing Experiment 2. There-
fore we have that

|Pr[win1]− Pr[win2]| ≤ negl1(κ)

for some negligible function negl1. Combining the probabilities in
all Experiments, we have that

Pr[IND-CPAA,D(κ) = 1] = Pr[win2] + negl(κ)

for some negligible function negl. To conclude the proof, we show
that the probability Pr[win2] is exactly 1/2. This is because the
challenge ciphertext in Experiment 2 is chosen independently from
bit b, therefore A can only guess b with probability 1/2. For this
reason the advantage ofA into breaking the sender-deniable scheme
must be negligible.

Deniability We show that there is no adversary with non-negligible
advantage in breaking the sender-deniability of our scheme through
a sequence of experiments.

Experiment 0 This experiment is the standard SDen experiment,
i.e., adversary A receives a public key pk = (N, e) and answers to
its Enc and OpenS queries, and then outputs a message (mf ,m).
The challenger picks a random bit b and sends the challenge cipher-
text either as C(mf ,m) if b = 0 or C(mf ,−) if b = 1 to A. A
eventually outputs its choice for b′. By definition we have that

Pr[win0] = Pr[SDenA,D(κ) = 1]

Experiment 1 In this experiment we modify the way the chal-
lenger constructs the challenge ciphertext. In particular, it con-
structs the challenge ciphertext as c = ((1 +N)mf) · (r)N

s

mod
Ns+1 where r ← Z∗

N . The adversary can only distinguish Ex-
periment 1 from Experiment 0 with negligible probability, since in
the random oracle model the ciphertexts of RSA-OAEP are dis-
tributed as random elements in Z∗

N for a PPT adversary. Note that
the challenger can still respond to the Enc and Open queries prop-
erly. Therefore there exists a negligible function negl0 such that

|Pr[win0]− Pr[win1]| ≤ negl0(κ)

Combining the probabilities in Experiments 0 and 1, we have that

Pr[SDenA,D(κ) = 1] = Pr[win1] + negl(κ)

for some negligible function negl. To conclude the proof, we show
that the probability Pr[win1] is exactly 1/2. This is because the
challenge ciphertext in Experiment 1 is constructed independently
from the bit b, so A can only guess b with probability 1/2. For
this reason the advantage of A into breaking the sender-deniable
scheme must be negligible.

Note that by fixing the value e for all keys (e.g., e = 3) we can
remove e from the public key and set pk = (N), i.e., a standard

public key for the scheme of Damgård-Jurik [9]. In this case the co-
ercer has no way to distinguish our deniable scheme from the stan-
dard non-deniable scheme of Damgård-Jurik and the claim made
by the sender that an observed ciphertext is the sole encryption of
mf is hard to contradict.

This scheme does not provide receiver deniability. Upon coer-
cion, the receiver would have to surrender the factorization of N ,
which allows the coercer to decrypt the deniable message m. Re-
ceiver deniability can be obtained using the technique described by
Canetti et al. in [6]; however, this would make the scheme inter-
active. To achieve receiver deniability, we construct another non-
interactive encryption scheme which is detailed next.

3.2 Sender-and-receiver Deniability
The idea behind this scheme is to use two ciphertexts of the

scheme of Damgård-Jurik to transport an ElGamal encryption. Even
if the receiver surrenders the factorization of N , the coercer still
needs another secret value to decrypt the ElGamal encryption. In
order to achieve receiver deniability, the receiver should claim that
it does not know such secret information. To achieve this result,
we use a well known generalization of ElGamal based on quadratic
residues modulo a composite (see, e.g., [15]). For simplicity, we
will also employ a public redundancy function red(·) in conjunc-
tion with the ElGamal encryption. Such function maps elements
from a generic message space to a redundancy space which is a
subset of QR(N) (the set of quadratic residues modulo N). Both
red(·) and red−1(·) are efficiently computable. Moreover, a ran-
dom quadratic residue is in the redundancy space with negligible
probability. In this way it is trivial for a receiver which knows how
to decrypt the ElGamal ciphertext to distinguish the encryption of
(m′

f ,m
′′
f ,m) from the encryption of (m′

f ,m
′′
f ,−).

Setup: On input a security parameter 1κ, choose an RSA modulus
N = pq of length κ where p and q are safe primes, i.e., p = 2p′+1
and q = 2q′+1 for primes p′, q′. Let λ = 2p′q′ and g be a random

generator of QR(N). Either choose x
R
← Zp′q′ and set h = gx or

set h
R
← QR(N). The public key is pk = (N, g, h); the secret

key is either sk = (λ, x) or sk = (λ,⊥) depending on how h was
chosen.

The public key pk is disseminated. If such keys get registered or
certified, the certifying authority will request a proof of knowledge
of the private key corresponding to λ, but not to x.

Enc: Given a public key pk = (N, g, h) and a value r
R
← ZN2 , the

sender forms a ciphertext as follows, depending on whether denia-
bility is used or not: To deniably transmit a message m along with
two innocent-looking fake messages m′

f , m
′′
f , the sender computes

Enc(pk,m′
f ,m

′′
f , m) = (c1, c2) =

((1 +N)m
′

f (c̄1)
Ns

, (1 +N)m
′′

f (c̄2)
Ns

) (mod Ns+1)

where c̄1 = gr mod N and c̄2 = red(m) ·hr mod N . To transmit
two messages m′

f ,m
′′
f without the ability to deny them, the sender

chooses two random values r1, r2 from QR(N) and sets c̄1 = r1
and c̄2 = r2 in the equation above.

Dec: Given a ciphertext (c1, c2), the recipient with the public key
pk = (N, g, h) and a private key sk = (λ, x) proceeds as follows:

1. Calculate v = cλ1 mod Ns+1 = (1 + N)m
′

fλ mod Ns+1

and use the technique described in [9] to compute m′
fλ mod

Ns. The message m′
f is calculated by multiplying the result

by λ−1.
2. Proceed analogously to calculate m′′

f .
3. If sk = (λ, x), compute m′ = (c2 mod N) · (c1 mod

N)−x mod N . If m′ is in the redundancy space, i.e., the

co-domain of the function red(·), set m = red−1(m′), oth-
erwise set m = −.

4. Return (m′,m′′,m).

OpenS : Suppose a coercer obtains a ciphertext (c1, c2) generated
by the sender and requests its opening. The sender exposes mes-
sages m′

f and m′′
f . Then it reveals the associated random choices

by claiming that c̄1 and c̄2 are random values uniformly chosen
from QR(N).

OpenR: Suppose a coercer obtains a ciphertext (c1, c2) generated
by the sender. Given the public key pk = (N, g, h) and the private
key sk = (λ, x), the receiver opens its private key as sk = (λ,⊥)
such that λ matches N . Basically the receiver claims that it does
not have knowledge of a value x such that the h = gx.

Note that OpenR reveals the factorization of N to the adversary.

THEOREM 2. Assuming that the scheme of Damgård-Jurik is

an IND-CPA-secure encryption scheme and ElGamal over QR(N)
is an IND-CPA-secure encryption scheme given the factorization of

N , our scheme is sender-deniable.

PROOF. In order to prove that our scheme is sender-deniable,
we need to show that an adversary A which separately plays the
IND-CPA experiment (for the security property) and the sender

deniability experiment (for the deniability property) can win any
of them with only negligible advantage.

Security We show that there is no adversary with non-negligible
advantage in breaking the IND-CPA security of our sender-and-
receiver deniable scheme through a sequence of experiments.

Experiment 0 This experiment is the standard IND-CPA exper-
iment, i.e., the adversary A receives a public key pk = (N, g, h)
and outputs two messages (m′

0,f ,m
′′
0,f ,m0) and (m′

1,f ,m
′
1,f ,m1).

The challenger picks a random bit and sends the challenge cipher-
text corresponding to the encryption of (m′

b,f ,m
′′
b,f ,mb) to A. A

eventually outputs a bit b′. By definition we have that

Pr[win0] = Pr[IND-CPAA,D(κ) = 1]

Experiment 1 In this experiment we modify the way the chal-
lenger constructs the challenge ciphertext. In particular, it con-
structs the challenge ciphertext as

C = (((1+N)m
′

f)·(r1)
Ns

, ((1+N)m
′′

f)·(r2)
Ns

) (mod Ns+1)

where both r1 and r2 are random elements from QR(N). The ad-
versary can only distinguish Experiment 1 from Experiment 0 with
negligible probability, since the elements r1 and r2 are distributed
properly for any PPT adversary. Therefore there exists a negligible
function negl0 such that

|Pr[win0]− Pr[win1]| ≤ negl0(κ)

Experiment 2 In this experiment we further modify the way the
challenger constructs the ciphertext. Here the challenge ciphertext
is constructed as C = (c1, c2) where c1 and c2 are chosen as the
encryption of two random element inMpk. Since the scheme of
Damgård-Jurik is IND-CPA-secure, A has only negligible advan-
tage in noticing that it is playing Experiment 2. Thus, we have that

|Pr[win1]− Pr[win2]| ≤ negl1(κ)

for some negligible function negl1. Combining the probabilities in
all Experiments, we have that

Pr[IND-CPAA,D(κ) = 1] = Pr[win2] + negl(κ)

for some negligible function negl. To conclude the proof, we show
that the probability Pr[win2] is exactly 1/2. This is because the

challenge ciphertext in Experiment 2 is chosen independently from
bit b, therefore A can only guess b with probability 1/2. For this
reason the advantage ofA into breaking the sender-deniable scheme
must be negligible.

Deniability We show that there is no adversary with non-negligible
advantage in breaking the sender-deniability of our scheme through
a sequence of experiments.

Experiment 0 This experiment is the standard SDen experiment,
i.e., A receives a public key pk = (N, g, h) and answers to its
Enc and OpenS queries according to the experiment. A outputs
a triplet (m′

0,f ,m
′′
0,f ,m0) in Mpk. The challenger picks a ran-

dom bit b and sends toA the challenge ciphertext corresponding to
the encryption of (m′

b,f ,m
′′
b,f ,m) if b = 0 and (m′

b,f ,m
′′
b,f ,−)

otherwise. A eventually outputs a bit b′. By definition we have that

Pr[win0] = Pr[SDenA,D(κ) = 1]

Experiment 1 In this experiment we modify the way the chal-
lenger constructs the challenge ciphertext. In particular, it con-
structs the challenge ciphertext as

C = (((1+N)m
′

f)·(r1)
Ns

, ((1+N)m
′′

f)·(r2)
Ns

) (mod Ns+1)

where both r1 and r2 are random elements from QR(N). The ad-
versary can only distinguish Experiment 1 from Experiment 0 with
negligible probability, since the elements r1 and r2 are distributed
properly for any PPT adversary. Note that the challenger can still
respond to the Enc and Open queries properly. Therefore there
exists a negligible function negl0 such that

|Pr[win0]− Pr[win1]| ≤ negl0(κ)

Combining the probabilities in Experiments 0 and 1, we have that

Pr[SDenA,D(κ) = 1] = Pr[win1] + negl(κ)

for some negligible function negl. To conclude the proof, we show
that the probability Pr[win1] is exactly 1/2. This is because the
challenge ciphertext in Experiment 1 is constructed independently
from messages b, so A can only guess b with probability 1/2. For
this reason the advantage of A into breaking the sender-deniable
scheme must be negligible.

THEOREM 3. Assuming that the scheme of Damgård-Jurik is

an IND-CPA-secure encryption scheme and ElGamal over QR(N)
is an IND-CPA-secure encryption scheme given the factorization of

N , our scheme is receiver-deniable.

PROOF. Since we already proved that the security property holds
for our scheme, in order to prove that it is receiver-deniable, we
need to show that an adversary A can win the RDen experiment
only with negligible advantage. To prove it, we show that if ad-
versary A wins the receiver deniability experiment with probabil-
ity non-negligible larger than 1/2, then we can build an efficient
algorithm B that wins in the IND-CPA experiment against ElGa-
mal over QR(N) with non-negligible advantage. B engages in
the IND-CPA experiment with the challenger, obtains the public
key pk = (g,N = pq, p, q, h = gx) and sets pk = (N, g, h),
λ = (p−1)(q−1)/2. Then B uses pk to setup the receiver denia-

bility experiment forA. B responds to OpenR queries fromAwith
sk = (λ,⊥). A eventually outputs its choice for (m′

f ,m
′′
f ,m).

B outputs m0,m1 to the challenger where m0 = red(m), and
m1 = R is a random message from the message space such that
|R| = |red(m)|. The challenger picks a random bit b and returns
(c̄1, c̄2) = ElGamalpk(mb). B builds the challenge ciphertext for

A as C = ((1 +N)m
′

f (c̄1)
Ns

, (1 +N)m
′′

f (c̄2)
Ns

). B continues

to respond to OpenR(C, pk) queries with (λ,⊥). Eventually A
outputs b′, and B outputs the same guess to the challenger.

It is not hard to see that Pr[IND-CPAB,ElGamal(κ) = 1] =
Pr[RDenA,⌈(κ) = 1]. That is, if b = 0, B receives the encryp-
tion of m and A receives the encryption of (m′

f ,m
′′
f ,m), in which

case B answers the challenge correctly if and only ifA answers its
challenge correctly. If b = 1, B receives the encryption of R and
A receives the encryption of (m′

f ,m
′′
f , R), which is interpreted as

(m′
f , m

′′
f ,−) since R is a random message. Therefore B guesses

correctly if and only if A guesses correctly. Since B cannot guess
correctly non-negligibly more than half of the times, δ ≤ negl(κ)
for some negligible function negl. A cannot detect the simulation
for the same reasons as in theorem 2.

3.3 Deniability from any Semantically Secure
Encryption Scheme

In this section we show that any IND-CPA-secure encryption
scheme can be used to construct a sender-and-receiver deniable
scheme. The main idea behind this solution is simple: a receiver’s
public key consists of two parts, where the first part is a public
key and the second part could be another public key or a randomly
chosen string. To achieve deniability, the second half of the key is
claimed to be random. Let E = (Gen, E,D) denote a IND-CPA-
secure encryption scheme. Let us also denote the domain of all
possible public keys output by Gen(1κ) as PK(κ). The redun-
dancy function red(·) now maps elements from a generic message
space to a subset of the message space of E .

Setup: On input a security parameter 1κ, a user generates a key pair
(pk1, sk1)← Gen(1κ) and also either generates a second key pair
(pk2, sk2) ← Gen(1κ) or chooses a random value from PK(κ).
The public key of the user is then pk = (k1, k2), where k1 = pk1
and k2 is either pk2 or the random value. The user’s corresponding
private key is sk = (s1, s2), where s1 = sk1 and s2 is either sk2
or the empty string ⊥. As in the previous scheme, the public key
pk = (k1, k2) is disseminated and, upon request, only a proof of
knowledge of the private key corresponding to k1 is provided.

Enc: Given a public key pk = (k1, k2), the sender forms a ci-
phertext as follows, depending on whether deniability is used or
not. To deniably transmit a message m along with an innocent fake
message mf , the sender forms the encryption as

Enc(pk,mf ,m) = (c1, c2) = (Ek1
(mf), Ek2

(red(m))).

To transmit a message m without the ability to deny it, the sender
forms the encryption using R chosen according to the distribution
defined by Enc(pk; ·) on Ck2

as

Enc(pk;m) = (c1, c2) = (Ek1
(m),R),

Dec: Given a ciphertext (c1, c2), the recipient with the public key
pk = (k1, k2) and private key sk = (s1, s2) proceeds as follows:

1. Set m1 = Ds1(c1).
2. If s2 6=⊥, compute m2 = Ds2(c2).
3. If m2 is in the redundancy space then return (m1, red

−1(m2)),
otherwise return (m1,−).

OpenS : Suppose a coercer obtains a ciphertext (c1, c2) generated
by the sender and requests its opening. Given public key pk =
(k1, k2), the sender opens the random choices made in generating
c1. The sender also claims that c2 was chosen from Ck2

according
to the distribution defined by Enc(pk; ·). Thus, the actual message
the sender claims to have sent is (m1,−).

OpenR: Suppose a coercer obtains a ciphertext (c1, c2) that the
recipient received. Given the recipient’s public key pk = (k1, k2),

the recipient opens its private key as sk = (s1,⊥) such that s1
matches k1. In other words, the recipient claims that the second
part of the public key was chosen at random from PK(κ).

THEOREM 4. Assuming that E = (Gen,E,D) is an IND-CPA-

secure encryption scheme with security parameter κ, the scheme

above is sender-deniable.

THEOREM 5. Assuming that E = (Gen,E,D) is an IND-CPA-

secure encryption scheme with security parameter κ, the scheme

above is receiver-deniable.

The proof of theorems 4 and 5 is provided in Appendix A.

4. A DENIABLE SHARED FILE SYSTEM
Cloud computing is a powerful tool for improving productivity

and ease of collaboration among users. It is not surprising that
there is a growing interest towards these technologies, although pri-
vacy and security concerns are still mostly an open problem (see
e.g. [21]). Many companies are offering practical storage and syn-
chronization services at a very low cost or even for free. Thanks
to these services, users can store their documents on line and eas-
ily synchronize them between a laptop and a desktop computer, or
other users. In order to protect their privacy, users can encrypt their
files prior to sending them using available encryption software. Un-
fortunately most current encryption software are designed to pro-
tect against adversaries who have no access to the decryption key,
while in our model we assume that the coercer will be able to obtain
access to such private information.

To solve this problem, a user can rely on a disk encryption tools
with support for deniability, like TrueCrypt. This solution is clearly
not acceptable in our scenario: TrueCrypt hidden volumes are easy
to uncover by comparing multiple snapshots of the container. More-
over, the owner of the shared data may not want all users to be able
to access portions of content encrypted by other members, unless
explicitly specified. In order to overcome this, several hidden vol-
umes can be created and shared using distinct secret keys. Unfortu-
nately, if we let users share symmetric keys for access control then
key management soon becomes a nightmare.

With our public-key deniable scheme we provide a reasonable
solution to the problems above. In particular we use our plan-ahead
deniable encryption scheme in the context of cloud storage and file
sharing among collaborating users, by relying on a cloud provider
– such as Amazon S3 and, on top of it, Dropbox – for the storage.
Such provider does not have access to the decryption keys for the
user’s data, and is not trusted by the users. Any participant that
is approached by the coercer and forced to decrypt one or more
shared files can just open the corresponding non-deniable (fake)
files without revealing any sensitive information.

4.1 High-level Description
In order to explore the practicality of our solution, we designed

and implemented a prototype application. The purpose of our pro-
totype is to implement DenFS, a file system which transparently
and deniably encrypts all its content, and stores it in the cloud. In
this way we intend to provide one of the basic tools for coordinating
a collaboration between users. One of the design goals of DenFS
is to provide a seamless experience, allowing users to interact with
objects stored in the deniable file system as if they were stored on
a standard file system: it is possible to read and write files and
directories using standard tools and applications with no modifica-
tions. The content of the deniable file system can be shared with
an arbitrary number of users. DenFS considers the cloud storage

!"#$%&

#$#'(&

)*#+,-."*/

0(#+,-."*&(*12*(&

32%(&4,45(6&

#$%%4&

7,*#&

4(+82#(&

9(*37&

3+"*5:

(*0&

9(*37&

;*:%2*(&

7'$+(0&

3"%0(+&

Figure 1: Components of the DenFS file system.

as untrusted and doesn’t rely on ACLs for access control. Instead,
DenFS implements access control through public key encryption:
users can read only the files for which they hold the appropriate
decryption key. When a new file is created, it is encrypted under
the public key of one or more users. In this way DenFS allows con-
tent providers to select which users can read a specific file. When
several users are collaborating, their files can shared by encrypting
them under the the public keys of all collaborators. DenFS uses hy-
brid encryption, as discussed below, for higher efficiency. Different
users may have a different view of the deniable file system, since
DenFS shows only the encrypted files for which the appropriate
decryption key was provided at mount time. The synchronization
between files and folders in DenFS and the cloud storage happens
in background. Files are also stored locally in encrypted form to
provide a buffer which hides all the delays introduced by the net-
work when reading or writing a file. Moreover, this buffer allows
users to interact with files without being constantly connected. A
synchronization service takes care of updating both the local cache
and the on-line repository. Conflicts are shown to the user who
can decide how to deal with them. File updates propagate with a
speed proportional to users’ available bandwidth. There is no sig-
nificant performance downside when a relatively large number of
users share the same folder, because each modification is sent only
once to the cloud and then pushed concurrently to each user.

We designed our prototype to be efficient, secure, and easy to
use. To mount a DenFS file system, a user simply specifies the
mount point, the backend directory, and a password. The backend
directory is the directory where encrypted files are stored. In order
to synchronize files between users, the backend directory must be
inside a Dropbox folder and must be shared. Each user’s secret key
is encrypted with a symmetric algorithm; the decryption password
is prompted when mounting the file system. If a user does not
enter the decryption password, it will only be able to encrypt new
files. All file system operations, like reading or writing a file, are
automatically mapped to the backend folder and therefore to the
cloud.

Before mounting the file system, each user must create a direc-
tory containing sensitive looking files which will be used to fill the
non-deniable part of a deniable encryption. This directory is called
non-deniable pool. DenFS can be mounted in one of the two modes
of operation available: deniable and non-deniable. When mounting
the file system in non-deniable mode, random data is used to fill the
deniable part of the ciphertext. In deniable mode, the non-deniable
part is filled with the encryption of a file selected from the non-

deniable pool. When the file system is mounted in non-deniable
mode, reading only involves the non-deniable part while writing
involves both the deniable and non-deniable part. We believe that
this approach provides a reasonably good usability. Improving us-
ability issues for a deniable filesystem and in particular for DenFS
is still an open problem. Every time the non-deniable content is

Table 1: Sequential Output on a 3GB Dataset

Per byte Block Rewrite

K/sec % CPU K/sec % CPU K/sec % CPU

Ext3 31657 39% 34455 5% 14432 2%

DenFS 22579 37% 34056 5% 14442 3%

Table 2: Sequential and Random Input on a 3GB Dataset

Seq. per byte Seq. per block Random seeks

K/sec % CPU K/sec % CPU K/sec % CPU

Ext3 35108 40% 53882 3% 4137 6%

DenFS 35447 52% 51758 2% 143.2 0%

written in the file, the deniable part of the same file is overwrit-
ten with random data from the proper set. When the file system is
mounted in deniable mode and a file is modified, the non-deniable
part of the same file is overwritten choosing new data from the non-
deniable pool. In this way an adversary who has access to several
snapshots of the encrypted content of the shared folder is unable to
distinguish between deniable and non-deniable operations by com-
paring snapshots.

DenFS is divided into several components. The architecture of
DenFS is summarized in figure 1. The front-end provides a stan-
dard interface for file system calls, such as open, read and write.
We based our implementation on FUSE (File system in Userspace)
which is a library and a kernel module that allow non-privileged
users to implement a fully functional file system in a userspace
program [10]. The system calls which deal with file permissions,
access and modification time, and file ownership implemented by
the front-end are simply forwarded to the back-end (local cache).
All the other system calls are mediated by a cryptographic engine
which implements our deniable encryption scheme. We rely on
OpenSSL [27] for the implementation of the ciphers and hash func-
tions used by DenFS.

Czeskis et al. highlight in [8] that both the operating system and
applications leak information about the deniably encrypted files.
As an example, Microsoft Windows stores the serial number of
each volume when it is mounted. With DenFS users do not resort
to deniability to hide a volume, as in the case of TrueCrypt hid-
den volumes. Similarly, file history does not compromise the de-
niability of DenFS, since the coercer knows the name of each file
in the deniable volume. Applications auto-saving feature should
be instructed so that temporary files are stored on the deniable file
system. Among the threats identified by Czeskis et al., a desktop
search application (such as Google Desktop) seems to be the worst
menace against the deniability of DenFS: when a DenFS volume is
mounted in deniable mode, a desktop search application is able to
construct its index from the deniable content of the files. Since the
coercer has access to such index, the deniability of the encrypted
documents is seriously compromised. We envision two counter-
measures: 1) users can store the index constructed by the desktop
search application on a deniably encrypted volume. In this case the
coercer doesn’t have access to the index corresponding to the deni-
able content of the DenFS volume; 2) users can disable the desktop
search functionality on the deniably encrypted volumes.

4.2 Low-level Description
Our file system provides a transparent translation layer between

the deniably encrypted local cache and the deniable mount point.
When a new file is added to the file system, a file with the same
name is encrypted and stored in the backend folder. For efficiency

Table 3: Small Files Sequential Performance – 512K Files

Create Read Delete

files/s CPU files/s CPU files/s CPU

Ext3 45643 65% 551512 99% 1227 1%

DenFS 5459 76% 22212 85% 17059 15%

Table 4: Small Files Random Performance – 512K Files
Create Read Delete

files/s CPU files/s CPU files/s CPU

Ext3 19388 27% 502471 99% 561 0%

DenFS 4902 67% 25766 84% 22280 22%

reasons, we encrypt each file using a hybrid encryption algorithm
based on the scheme in section 3.3. For the session key encapsu-
lation we employ RSA-OAEP, while for the data encapsulation we
use AES with a 128-bit key in counter mode. The data encapsu-
lation is an instantiation of the scheme in section 3.3, and the key
encapsulation is an instantiation of the same scheme where the fake
message is the key used to encrypt the fake message, while the de-
niable message is the key used to encrypt the real message. The
structure of the files in the backend folder is:

header

length
header size

non-deniable

data

deniable

data

The fields header length and size are 32-bit little-endian unsigned
integers and indicate the length of the header and the file size, re-
spectively. Both header length and size are expressed in bytes,
therefore the maximum file size is 4GB. This, however, requires the
underlying file system in the backend folder to allow the creation
of a file slightly larger than 8GB to accommodate the deniable and
non-deniable data and the other fields. Dropbox does not impose
any limit on the file size, although the free account only allows
users to upload up to 2GB of data and therefore up to about 1GB
of deniably encrypted data. The header also contains the session
keys used to encrypt the non-deniable and the deniable messages,
the two initialization vectors, and the two MAC tags. The default
key size for the asymmetric cipher is 1024 bits and can vary from
1024 to 4096 bits. Users keep a local file which maps a directory
on the deniable file system to a user’s key. Adding a new file to
a directory also means encrypting it under a specific key, which is
chosen from the local map. If no key is specified for a folder, a new
file stored in that folder is encrypted under the user’s public key.

For every new encrypted file, the session key is saved in a buffer.
This allows a user who writes a new file to be able to read it back
even if it did not encrypt it under its public key. This feature allows
the file system to mimic more closely the behavior of a standard
file system in which, after writing a file, users can re-read it. By
disabling this feature, a new file disappears after being saved if it
was not encrypted under the creator’s public key. The key buffer is
erased when the file system is unmounted.

When the file system is used in non-deniable mode and a user
creates a new file, our prototype writes a file with the same name in
the backend. Then it picks a random session key, saves it in the key
buffer and encrypts it. The ciphertext is stored in the file header.
A write operation on the deniable folder translates to an encryption
and a write operation in the associated file on the backend. The
size field is updated accordingly. After that, the deniable part of
the backend file is filled with random data and a random value is
inserted in the header as a deniable encryption key.

When a user creates a new file on the file system mounted in de-
niable mode, a temporary file – filename.den – is created in a local

temporary folder for efficiency reasons. Note that when writing a
new file, the size of the file is not necessarily know so it is impossi-
ble to predict the offset for the encryption of the deniable data. The
temporary file contains the encryption of the deniable part of the
document. The session keys are chosen and stored similarly to the
non-deniable case. Every write operation on the front-end trans-
lates in a write operation in the temporary deniable file. When the
document is closed, a file from the non-deniable pool is encrypted
and stored in the non-deniable part of the document. The file is
also removed from the non-deniable pool. The encryption of the
deniable content is stored after the encryption of the file from the
non-deniable pool. When a stat request is made to the file system,
the attributes of the file in the backend are reported, except from
the file size, which is read from the appropriate field. Hard links
are not supported in the current implementation.

4.3 Performance Evaluation
We performed a combination of synthetic and real-world bench-

marks to verify the performance impact of DenFS over a regu-
lar non-encrypted file system (Ext3 in our tests). We used Bon-
nie++ [4], a file system benchmark tool, and the OpenOffice pro-
ductivity suite to evaluate the performance of our prototype. Bon-
nie++ performs sequential and random input/output tests. We mea-
sured sequential output performance writing a single character at a
time, a whole block and rewriting one block at a time for 3GB of
data. We also performed a sequential reading test, where we read
one character at a time and then one block at a time from the same
data. Finally we performed random seeks within a large files and
measured how many seeks per second we were able to perform.
Then we measured the overhead for small files by creating, reading
and deleting 512,000 files in both sequential and random order.

The test machine is based on an Intel Core 2 Duo T9300 pro-
cessor running at 2.6 GHz. The available RAM is 4GB and the
hard disk is a 320GB, 5400 rpm Toshiba MK3252GSX. The oper-
ating system is Ubuntu Linux with kernel 2.6.31. The key length
for the asymmetric ciphers was set to 1024 bits in all tests. The file
system was mounted in deniable mode. The results for sequential
and random access on a large file are summarized in tables 1 and
2. The results clearly show that when dealing with large files, all
tests except random seeks are disk limited. In most cases, there is a
small loss of performance introduced by DenFS which we believe
is not going to be noticeable in everyday use. The most pronounced
performance penalty is in the random read performance which de-
creases from about 4MB/s to 143KB/s.

Note that in some of the tests DenFS uses slightly less CPU than
Ext3. This may appear odd at first, since DenFS is an encrypted
filesystem. However the CPU usage in Table 1 (per-byte access)
and 2 (sequential per-block access) can be justified by small varia-
tion between different runs. The CPU is clearly not the bottleneck
in these tests, and therefore such variation is hard to eliminate. The
behavior of the benchmark in table 3 (read) and 4 (read) – both the
throughput in terms of files/second and the CPU usage are lower
with DenFS than with Ext3 – is a clear indication that in this part
of the test the performance of DenFS depends much more on the
disk than on the CPU. Note that in our test DenFS was capable of
deleting files ten to forty times faster than Ext3 because with DenFS
files are not deleted immediately, but put in a queue and processed
in background. Deleted files disappear immediately from the file
system from an application point of view.

We investigated further to determine the amount of the overhead
introduced by the cryptographic algorithms with small files. More
specifically, we were interested to see how the file size impacted
the read and write speed. Therefore, we created a large set of small

Figure 2: Read and write speed for small files.

Figure 3: Performance comparison between Ext3 and DenFS

with OpenOffice. The reported values are measured in seconds.

files and we measured the read and write speed when copying the
files from and to the deniable file system. The size of the files
composing our testbed varied from 1KB to 128KB. The results are
summarized in figure 2, which shows the average speed in MB/s
for a given file size. With small files, the overhead introduced by
our file system is non-negligible. When the file size increases, both
write and read performance improve noticeably as expected.

We also performed a real-world test with OpenOffice 3.0.1 build
9379. In order to simulate access to complex documents, we cre-
ated a 306 pages OpenOffice Writer document and a spreadsheet of
an approximate size of 940KB. The spreadsheet contained several
thousand cells and ten graphs, while the word processor document,
which was all written using the same font, also contained some
bitmap images. We tried to open, modify, and save them on both
Ext3 and DenFS. A copy of both OpenOffice Writer and Calc was
running in the background to get rid of the application loading time
in the measurements. The values shown on figure 3 represent the
average of ten measurements. We believe that the performance of
the two file systems are virtually indistinguishable for a user.

5. CONCLUSIONS
Deniable encryption allows the sender or receiver to open a ci-

phertext to a different value than what it encrypts. This work brings
deniable encryption to practical use by developing the first efficient
sender-and-receiver deniable public-key encryption scheme from
standard tools alone and introducing the concept of deniable cloud
storage. Deniable cloud storage allows users to collaborate and
store data in such a way that if an adversary coerces a user into
opening all encrypted data, the information still stays secret. We
develop a prototype of a deniable file system DenFS which realizes
this functionality.

6. REFERENCES

[1] R. Anderson, R. Needham, and A. Shamir. The
Steganographic File System. In International Workshop on

Information Hiding, pages 73–82, 1998.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katzand, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Feb 2009.

[3] Mihir Bellare and Phillip Rogaway. Optimal Asymmetric
Encryption. In EUROCRYPT, pages 92–111, 1994.

[4] Bonnie++: a free and open source filesystem benchmark.
http://www.coker.com.au/bonnie++/.

[5] E. Bresson, D. Catalano, and D. Pointcheval. A Simple
Public-Key Cryptosystem with a Double Trapdoor
Decryption Mechanism and Its Applications. In Advances in

Cryptology - ASIACRYPT’03, pages 37–54, 2003.

[6] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable
Encryption. In Adnvances in Cryptology – CRYPTO’97,
volume 1294 of LNCS, pages 90–104, 1997.

[7] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure
Public-Key Encryption Scheme. Journal of Cryptology,
20(3):265–294, 2007.

[8] A. Czeskis, D. J. St. Hilaire, K. Koscher, S. D. Gribble,
T. Kohno, and B. Schneier. Defeating Encrypted and
Deniable File Systems: TrueCrypt v5.1a and the Case of the
Tattling OS and Applications. In USENIX Workshop on Hot

Topics in Security (HotSec’08), 2008.

[9] I. Damgard and M. Jurik. A Generalisation, a Simplification
and some Applications of Paillier’s Probabilistic Public-Key
System. In Public Key Cryptography (PKC’01), pages
119–136, 2001.

[10] Filesystem in Userspace.
http://fuse.sourceforge.net/.

[11] C. Gentry and A. Silverberg. Hierarchical ID-based
cryptography. In ASIACRYPT’02, pages 548–566, 2002.

[12] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based
Encryption. In Advances in Cryptology – EUROCRYPT’02,
pages 466–481, 2002.

[13] M. Ibrahim. A Method for Obtaining Deniable Public-key
Encryption. International Journal of Network Security,
8(1):1–9, 2009.

[14] M. Ibrahim. Receiver-deniable Public-key Encryption.
International Journal of Network Security, 8(2):159–165,
2009.

[15] A. Kiayias and M. Yung. Efficient Secure Group Signatures
with Dynamic Joins and Keeping Anonymity Against Group
Managers. In Progress in Cryptology – Mycrypt’05, pages
151–170, 2005.

[16] M. Klonowski, P. Kubiak, and M. Kutylowski. Practical
Deniable Encryption. In SPFSEM’08, volume 4910 of
LNCS, pages 599–609, 2008.

[17] B. Meng and J. Wang. A Receiver Deniable Encryption
Scheme. In International Symposium on Information

Processing (ISIP’09), 2009.

[18] N. Mirzaei. Cloud Computing. Technical report, Indiana
University, 2008.

[19] P. Paillier. Public-key Cryptosystems Based on Composite
Degree Residuosity Classes. In Advances in Cryptology –

EUROCRYPT’99, pages 223–238, 1999.

[20] H. Pang, K. Tan, and X. Zhou. StegFS: A Steganographic
File System. In International Conference on Data

Engineering (ICDE’03), page 657, 2003.

[21] S. Pearson. Taking Account of Privacy when Designing
Cloud Computing Services. In ICSE Workshop on Software

Engineering Challenges of Cloud Computing (CLOUD ’09),
pages 44–52, 2009.

[22] Amazon S3 http://aws.amazon.com/s3/.

[23] Rubberhose Project
http://iq.org/˜proff/rubberhose.org/.

[24] Dropbox http://www.dropbox.com/.

[25] Truecrypt http://www.truecrypt.org/.

[26] TrueCrypt Hidden Volumes
http://www.truecrypt.org/hiddenvolume.

[27] The OpenSSL Project website
http://www.openssl.org/.

[28] M. Vouk. Cloud Computing: Issues, Research and
Implementations. In International Conference on

Information Technology Interfaces (ITI’08), pages 31–40,
2008.

[29] Wired: “Spam Suspect Uses Google Docs; FBI Happy”
http://www.wired.com/threatlevel/2010/

04/cloud-warrant/.

[30] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based
Encryption for Complex Hierarchies with Applications to
Forward Security and Broadcast Encryption. In ACM

Conference on Computer and Communications Security

(CCS’04), pages 354–363, 2004.

[31] X. Zhou, H. Pang, and K. Tan. Hiding Data Accesses in
Steganographic File System. In International Conference on

Data Engineering (ICDE’04), page 572, 2004.

APPENDIX

A. SECURITY PROOFS

PROOF OF THEOREM 4. In order to prove that our scheme is
deniable, we need to show that an adversary A which separately
plays the IND-CPA experiment (for the security property) and the
sender deniability experiment (for the deniability property) can have
only negligible advantage in winning any of the experiments. First
we show that there is no adversary with non-negligible advantage in
breaking the IND-CPA security of our scheme through a sequence
of experiments.

Experiment 0 This experiment is the standard IND-CPA exper-
iment, i.e., the adversary A receives a public key pk and outputs
two messages (m0,f ,m0) and (m1,f ,m1). The challenger picks
a random bit b and sends the encryption of (mb,f ,mb) to A. A
eventually outputs a bit b′. By definition we have that Pr[win0] =
Pr[IND-CPAA,E(κ) = 1].

Experiment 1 In this experiment we modify the way the chal-
lenger constructs the challenge ciphertext. In particular, now it
constructs the challenge ciphertext as C = (c1, c2) where c1 and
c2 are the encryption of two random messages fromMpk. The ad-
versary can only distinguish Experiment 1 from Experiment 0 with
negligible probability, since E is IND-CPA-secure. Therefore there
exists a negligible function negl0 such that |Pr[win0]−Pr[win1]| ≤
negl0(κ). Combining the probabilities from Experiments 0 and 1,
we have that Pr[IND-CPAA,E(κ) = 1] = Pr[win1] + negl(κ) for
some negligible function negl. Note that the probability Pr[win1]
is exactly 1/2 because the challenge ciphertext in Experiment 1 is

chosen independently from bit b, thereforeA can only guess b with
probability 1/2, therefore the advantage ofA must be negligible.

To prove the deniability property we show that if adversary A
wins the sender deniability experiment with probability non-
negligibly larger than 1/2 then we can build an efficient algorithm
B that wins in the IND-CPA experiment for E with non-negligible
advantage. Let Pr[SDenA,E(κ) = 1] − 1/2 = δ. B engages
in the IND-CPA experiment with a challenger, obtains the pub-
lic key pk and uses it to setup the sender deniability experiment
for A by constructing pk = (k1, k2) where k1 is generated using
Gen(1κ) and k2 = pk (i.e., B sends also k2 toA without knowing
the corresponding private key). B responds to the Enc(mi,mj , pk)
queries with C(mi ; mj). Let (ri, rj) be the randomness used by
B to respond to the Enc query. A eventually outputs its choice
for the pair (mf , m). B outputs m0,m1 to the challenger where
m0 = m, and m1 = R is a random message from the message
space such that |R| = |m|. The challenger picks a random bit b and
returns c̄ = Epk(mb). B builds the challenge ciphertext for A as

C = (c1 ; c̄), where c1 = Ek2
(mf). Let r be the randomness used

by B to encrypt c1. B responds to OpenS(C, pk) queries with r if
C = C, with (ri, rj) if C = C(mi,mj), and with ⊥ otherwise.
Eventually A outputs b′, and B outputs the same guess to the chal-
lenger. Clearly Pr[IND-CPAB,E(κ) = 1] = Pr[SDenA,E(κ) =
1]. That is, if b = 0, B receives the encryption of m and A re-
ceives the encryption of (mf ,m), in which case B answers the
challenge correctly if and only ifA answers its challenge correctly.
If b = 1, B receives the encryption of R and A receives the en-
cryption of (mf , R), which is interpreted as (mf ,−) since R is a
random message. Therefore B guesses correctly if and only if A
guesses correctly. Since B cannot guess correctly non-negligibly
more than half of the times, δ ≤ negl(κ) for some negligible func-
tion negl.

PROOF OF THEOREM 5. For the security property see proof of
theorem 4. For the deniability problem, given an IND-CPA-secure
scheme E = (Gen,E,D), we show that if adversary A wins in
the receiver deniability experiment with probability non-negligibly
larger than 1/2, then we can build an efficient algorithm B that
wins in the IND-CPA experiment with non-negligible advantage.

Let Pr[RDenA,E(κ) = 1]−1/2 = δ. B engages in the IND-CPA
experiment with a challenger, obtains the public key pk and uses it
to setup the receiver deniability experiment for A by constructing
pk = (k1, k2) where k1 is generated using Gen(1κ) and k2 = pk
Let s1 be the private key associated with k1. B responds to any
OpenR(C, pk) query with sk = (s1,⊥), regardless of whether
C encrypts one messages or two. A eventually outputs its choice
for the pair (mf , m). B outputs m0,m1 to the challenger where
m0 = m, and m1 = R is a random message from the message
space such that |R| = |m|. The challenger picks a random bit b
and returns c̄ = Epk(mb). B constructs the challenge ciphertext
for A as C = (c1 ; c̄), where c1 = Ek1

(mf). Eventually A
outputs b′, and B outputs the same guess to the challenger.

Clearly Pr[IND-CPAB,E(κ) = 1] = Pr[RDenA,E(κ) = 1].
Indeed, if b = 1, B receives the encryption of R andA receives the
encryption C(mf ; R), which is interpreted as C(mf ; −) since R
is a random message. Thus B answers the challenge correctly if
and only if A answers its challenge correctly.

If b = 0, B receives the encryption of mf andA receives the en-
cryption of (mf ,m). OpenR(C, pk) returns sk = (s1,⊥) which
exposes mf . Thus even in this case B guesses correctly if and
only if A guesses correctly. Since B cannot guess correctly non-
negligibly more than half of the times, δ ≤ negl(κ) for some neg-
ligible function negl.

B. RESILIENCE TO PHISHING ATTACKS
In order to obtain receiver-deniability, our sender-and-receiver

deniable schemes require the receiver to conceal the existence of
the second private key (if present), so that it does not have to reveal
it to the coercer. In practice, it may be possible for an adversary
to obtain information about the existence of such secret key. A
coercer can send to the receiver a deniable message which asks to
perform a specific action that the coercer will be able to notice, such
as opening a maliciously crafted web page. Even if we assume that
the receiver can avoid any action that the adversary might notice,
the coercer may obtain the same result by exploiting a vulnerabil-
ity in the receiver’s client. As far as we can ascertain, this type of
phishing attack has not been considered before in the deniability
literature. Phishing attacks have obvious bearing in the cloud stor-
age setting: a malicious cloud provider is in a favorable position to
perform this kind of attack, since it could determine the existence
of a private key by adding a (public-key) encrypted file to the cloud
storage and observing the resulting behavior of the targeted user.

As a trivial solution to this problem, instead of using the same
key pair for all encryptions the receiver generates several indepen-
dent key pairs so that each message is encrypted using a different
and independent public key. Even if the coercer establishes the ex-
istence of a specific private key, it does not learn any information
about any other. Unfortunately, this trivial solution has a very high
cost in terms of key distribution and imposes a limit on the number
of messages which can be sent to a receiver.

Forward-secure schemes may seem to provide a more efficient
solution. A forward-secure public key encryption scheme [7] pro-
tects secret keys from exposure by evolving them at regular inter-
vals. When a key evolves into a new key, the old secret key is
deleted and cannot be reconstructed, and therefore cannot be pro-
vided to the coercer. Unfortunately, the existence of a private key at
a specific time interval implies the existence of private keys corre-
sponding to all previous time intervals, making this solution invalid.

A better solution is constructed using an identity-based encryp-
tion scheme (IBE) to “compress” the public keys into a single value.
Roughly, the receiver acts as the IBE trusted authority (PKG) itself,
divides the time in intervals, and generates an IBE key under his
identity for a random subset of all intervals; then the recipient is
supposed to delete any master secrets of the PKG. The sender en-
crypts messages for the receiver with a key valid at a specific time.
If the coercer establishes the existence of the private key for a time
interval, only the messages encrypted in that interval are compro-
mised. The problem with this approach is that the secret key must
consist of large number of values. To avoid this, the receiver can
claim to delete the master secret keys of the IBE trusted authority
but keep a copy instead deniably encrypted locally, so that new IBE
keys can be generated when needed.

A more elegant solution can be built using a forward secure hi-
erarchical identity-based encryption scheme (FS-HIBE) [30]. A
hierarchical IBE (HIBE) [11, 12] allows a PKG to delegate the gen-
eration of private keys to lower-level PKGs. A FS-HIBE scheme
allows each user in the hierarchy to refresh its private key period-
ically while keeping the public key the same. Using a FS-HIBE
scheme, each user can construct a single path Username → Year

→Month→Week and have some secret key to evolve while others
get deleted. As with the previous solution, the exposure of a secret
key compromises only the messages encrypted in one time interval.

The existence of more efficient solutions is still an open prob-
lem. We do not investigate this further at this time and we point out
that phishing attacks are relevant in this context and they seemingly
affect any plan-ahead public-key (i.e., non-interactive) deniable en-
cryption scheme.

