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Abstract—This paper introduces DISPERSE, a distributed
scalable architecture for delivery of content and services that pro-
vides resilience against node failure through location-independent
storage and replication of content. Current content delivery
networks (CDNs) have, at least to some degree, a centralized
structure thus susceptible to a single point of failure. DISPERSE
addresses this limitation by implementing a fully de-centralized
structure. DISPERSE is a two-layer architecture: the first layer
(front-end layer) exposes services (e.g., Web, SFTP) to clients;
the second layer (back-end layer) provides reliable distributed
storage of content and application state. Content in DISPERSE’s
back-end layer is stored and exchanged as Named Data Network
(NDN) content objects. This allows DISPERSE to implement
fine-grained, location-independent, fully decentralized content
replication mechanisms.

We validate the performance of DISPERSE under two node
failure scenarios. In the first scenario, content can be stored in
any DISPERSE node, and all nodes are equally likely to fail. In
this scenario, we use non-linear optimization techniques to de-
termine the optimal number of content copies under availability
and latency constraints. In the second scenario, different nodes
fail with different probabilities, and content is stored in nodes
according to its value, node failure probability, and resource avail-
ability. This scenario is addressed as an instance of the minimum
cost flow problem. Our results show that DISPERSE reduces the
failure of content retrieval by five orders of magnitude compared
to common CDN implementations, without significantly increas-
ing content retrieval delay. Further, numerical results show that
DISPERSE improves content availability by a factor of 1.3×-2.3×
when deploying the minimum cost flow algorithm.

Index Terms—DISPERSE, Named Data Networking (NDN),
Content Delivery Networks (CDN)

I. INTRODUCTION

Content replication is the primary technique used to provide
resilience against node failures. Content delivery networks
(CDNs) [1]-[3] are one of the most popular ways of hosting
and replicating content. A CDN consists of an “origin server”
that hosts content uploaded in the network, and many “CDN
servers” that host copies of content available at the origin server.
When a client requests content, the CDN redirects the request
to the geographically nearest CDN server. If the CDN server is
unavailable, the client re-issues the same request to the origin
server [4]-[6]. Although CDNs have now evolved to be effective
at delivering content with high reliability and low latency, they
suffer a fundamental limitation: if the origin server fails (e.g.,
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due to natural hazards [7] or national censorships [8]), the
performance of the entire CDN is greatly reduced, making the
origin server a single point of failure.

In this paper, we introduce DISPERSE, a two-layer content
distribution architecture (see Figure 1), which is functionally
equivalent to CDNs. However, in contrast with CDNs, DIS-
PERSE has no single point of failure. DISPERSE leverages
Name Data Network (NDN) [9] to provide resilience to
common node failure scenarios through scalable, efficient,
and transparent replication of content and services across
geographically distributed endpoints. Each DISPERSE layer is
composed of a multitude of geographically-distributed hosts.
By design, nodes in each layer are functionally equivalent,
i.e., they can in principle serve the same requests. The front-
end layer provides lightweight implementations of common
services (e.g., Web, databases, SFTP). Each host in this layer
stores no content, and is intended to maintain only transient
states (i.e., states only corresponding to each transaction). As a
result, front-end nodes act similarly to proxy servers to provide
standard interfaces that clients use to access DISPERSE. This
allows any node in the front-end layer to seamlessly take
over the workload of another failed front-end layer node. The
back-end layer implements reliable, scalable and low-latency
distributed storage. This layer leverages Named Data Network
(NDN) [9] for data representation, and for communication
between back-end layer nodes, and between front-end and
back-end layer nodes.

Contributions. The key contributions in this paper are: (1) the
design of DISPERSE, a distributed and scalable architecture
for content replication resilient to node failures; and (2) a
detailed analysis that demonstrates the benefits of DISPERSE
in comparison with CDNs under two scenarios, which we refer
to as randomized and targeted node failure. While the proposed
architecture can be used for content storage as well as content
distribution, the focus of this work in on content distribution.
Specifically, we evaluate the performance and resilience to node
failure of DISPERSE in the context of content distribution.

By design, DISPERSE mitigates node failure by replicating
both data (in the back-end layer) and services (in the front-end
layer). However, replication incurs a cost. In this paper, we
analyze the tradeoff between replication cost and corresponding
increases in availability. We first consider a random node failure
scenario, and devise a non-linear unconstrained optimization-
based method to determine the optimal amount of replicas of
content in DISPERSE, and extend it to include constraints on
latency for content retrieval. Our results indicate that, while



2

Back-end 
layer node

Client Client Client

Front-end 
layer host

Front-end 
layer host

Front-end 
layer host

Back-end 
layer node

Back-end 
layer node

Front-end 
Layer

Back-end 
Layer

Data replication

Fig. 1. Overview of DISPERSE architecture. The front-end layer acts as
a proxy for the back-end layer by providing a stateless implementations of
services such as Web, databases, and SFTP. The back-end layer stores copies
of the content and long-term state.

there may be many factors that affect the optimal number
of replicas (e.g., availability of resources, cost of storage
and node failure probability), node failure probability is the
most significant factor, thus motivating the need for content
replication strategies that are resilient to node failure. We also
compare the performance of DISPERSE and common CDN
implementations, in terms of failure to retrieve content. Our
results show that DISPERSE reduces the failure of content
retrieval by five orders of magnitude compared to common
implementation of CDNs, without significantly increasing the
latency in retrieval of content.

We then develop a minimum cost flow based algorithm to
optimally distribute content in a network where nodes fail with
different probabilities (e.g., as a result of an attack). Further,
we consider the case in which different content has different
priority, and the costs incurred in storing content in different
nodes are different. We develop bounds in the number of re-
assignment of content to different nodes. Numerical results
show that content availability increases from about 1.33×
to 2.3× when deploying the minimum cost flow algorithm
as against the random node failure scenario. The algorithm
increases content availability for high priority content, with a
trade-off of reduced availability of low priority content.
Organization. The rest of the paper is organized as follows.
Section II lists the related literature on content replication. The
DISPERSE architecture is described in Section III. Content
replication strategies in DISPERSE under randomized and
targeted node failure scenarios are discussed in sections IV
and V, respectively. We conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Current content replication strategies can be categorized into
heuristic approaches [10], game theoretic approaches [11], [12],
flow control and load balancing based approaches [13], [14]
and utility based approaches [15], [16], [17].

Kangasharju et al. [10] formulated the content replication
problem as a constrained shortest path problem, and developed

heuristics for content replication in CDNs. Khan et al. [11]
present a game theoretic strategy in which users bid for
resources, based on the value they assign to content. The
authors discuss multiple auction models for content replication.
Pollatos et al. [12] studied a Leff-Wolffe-Yu (LWF) network
model wherein users store content according to a game theoretic
approach to minimize cost of storage due to utilization of
resources. The authors obtained pure strategy Nash equilibria
and network stability conditions. La et al. [14] presented a
load balancing approach for content replication under shared
capacity constraints. Ganguly et al. [13] presented a cross layer
architecture called SPIDER where they explored the use of
optimal widest path trees in conjunction with point to point TCP
flow control mechanisms. Wu and Li [15] presented a utility-
based content replication strategy for video on demand in peer
to peer networks. Cache-aware and scalable routing for reliable
information retrieval was presented in [16]. In [17], Moharir
and Karamchandani presented a fractional knapsack approach
for content replication. They assigned a value to content, based
on the frequency of requests and assigned weights depending
on the resources consumed. Li and Simon [18] present an
integer programming based push strategy for CDNs and show
that it is better than caching for vide traffic. Similar integer
programming approaches to minimize storage cost and latency
was discussed in [19] and [20].

Most approaches in the literature only consider content
replication based on resource availability, or aim at minimizing
access cost. However, they do not consider failure of nodes
into account. The closest work to this paper that takes online
availability of peers into account is the paper of Lin et al. [21].
In this paper, the authors considered different fractions of
content in different peers, and analyzed content availability
of specific content when some of the peers go off-line. The
main difference between our work and [21] is that in [21] node
availability, content priority, and other factors are listed but
replication is not optimized based on these factors. To the best
of our knowledge, this is the first research work that discusses
content replication optimized for content priority, node failures
and resource availability at the nodes that store content.

There is a body of work (see, e.g., [22], [23], [24], [25])
introducing hybrid CDN-P2P architectures. These architectures
aim to combine the scalability and robustness of P2P networks,
with the reliability of CDNs. Similarly to traditional CDNs,
they require the origin server to distribute and replicate content
to their various nodes. As a result, the origin server represents
a single point of failure, even when it is replicated in several
hosts. For this reason, work on CDN-P2P does not analyze
origin server failure scenarios.

A. NDN Background
Messaging and routing between DISPERSE is based on

core ideas introduced by Named Data Networking (NDN) [9].
NDN is a prominent instantiation of the general content-centric
networking paradigm [26], in which clients request content
directly by name, rather than by the location of the host serving
it (e.g., www.cnn.com/politics).

NDN defines two types of packets: interest packets, and
content objects. Clients’ requests for content are represented
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by interest packets, which include the name of the content being
requested, as well as metadata that helps the network to retrieve
the desired content. When a router forwards an interest packet,
it stores the packet’s name and incoming interface ID in a data
structure called Pending Interest Table (PIT). Information in
the PIT is later used to forward the corresponding data packet
to the consumer(s) who requested it. Because interest packets
do not indicate which host is expected to serve the content,
routers can forward them to either the appropriate content
producer, or to a nearby cache when available. To determine
how to forward interest packets, routers include a name-based
Forwarding Information Base (FIB), populated using routing
algorithms similar to those used with IP.

Because content objects returned to users might be hosted by
any server or router on the network, trust on the content cannot
be established based on the communication channel between
the client and the device serving a particular content object.
Instead, in NDN each content object is signed individually. This
enables consumers to determine whether the content returned
by the network is legitimate.

While NDN is efficient at distributing content, it requires
specialized software to access it. DISPERSE addresses this
issue by making NDN messaging and routing transparent to
clients, which interact exclusively with front-end layer nodes.

III. DISPERSE DESIGN

DISPERSE consists of two layers: the front-end layer, which
is composed of a number of hosts, which are in charge of
receiving, translating, dispatching, and responding to requests
from clients (i.e., producers and consumers); and the back-end
layer which stores and replicates data objects (later referred to
as content objects), and serves requests received from the front-
end layer. Clients locate front-end layer nodes via DNS queries.
As a result, ISPs can direct clients to the closest front-end layer
nodes. Each DNS query is expected to return multiple front-end
layer nodes. This enables clients to seamlessly switch from a
failed to a working front-end layer node. Similarly, front-end
layer nodes locate back-end layer nodes using their DNS name,
thus achieving the same robust characteristics in the presence
of back-end layer node failure.

Front-end Layer. The front-end layer nodes implement inter-
faces for application-layer protocols. For instance, a front-end
layer node can implement an HTTP interface by listening
on port 80, and converting GET-s and POST-s request to the
corresponding back-end layer requests. Although in principle,
different front-end layer nodes can implement different pro-
tocols, without loss of generality in the rest of the paper we
assume that all nodes implement the same protocol.

Front-end layer nodes are analogous to NDN routers.
To perform their functions, all front-end layer nodes
implement the following two data structures: the
Forwarding Information Base (FIB), and the Pending
Requests Table, or PRT (similar to NDN’s PIT). The FIB
stores entries for each piece of content as several tuples
〈namespace, (node1, cost1), . . . , (noden, costn)〉, where
nodei indicates the IP address or DNS name of a node in the
back-end layer which stores content with name starting with

namespace, and costi is a cost metric for requesting data to
that node (e.g., round-trip time).

Upon receiving a request, a front-end layer host performs
an FIB lookup using the name of the content being sent or
received. The lookup returns a list of back-end layer nodes,
each of which is suitable for addressing the request. If a front-
end layer node forwards a request to a back-end layer node,
and does not receive any response, the front-end layer node
considers that the back-end layer node is unavailable, and
updates the FIB accordingly. Periodically, the front-end layer
node sends probe messages to a subset of the back-end layer
nodes that store the content in to refresh costi in the FIB. This
mechanism ensures that DISPERSE is able to deliver content
with low delay even when a large number of back-end layer
nodes has failed. The PRT keeps track of requests that have
been forwarded to back-end layer node layers, and for which
the corresponding content has not been returned yet. Once a
back-end layer node returns a content object, the front-end
layer node performs a PRT look up to determine how the data
should be converted to the appropriate protocol, and which
host(s) requested the data. Upon correct match (or when they
time out), entries are removed from the PRT.

Back-end Layer. The back-end is composed of nodes identified
by a DNS name or IP address. A node can be a single host,
or a collection of hosts (e.g., a data center). Nodes advertise
their capabilities (e.g., bandwidth, available storage space), as
well as their topology information and geographical location,
to front-end layer nodes. When a back-end layer node receives
new content, it sends a namespace advertisement message
(containing one or more namespaces, common to the data
objects received) to front-end layer nodes, to update their FIB.

We assume that the security properties of services offered
using DISPERSE will vary widely. It is not reasonable to
assume that all the nodes will faithfully enforce centralized
fine-grained user-based access control policies on classified
data. To address this challenge, DISPERSE builds on the access
control and content authenticity mechanisms used in NDN.
Specifically, it implements per-packet security: data objects
are individually encrypted and authenticated (i.e., signed), and
access control is implemented using cryptographic tools on
the objects’ decryption keys. This allows secure, efficient, and
decentralized data protection. Access to the data therefore
requires access to the decryption key, which is distributed
using public key cryptography. For instance, decryption keys
are encrypted under the public keys of the intended recipients,
and stored as data.

Content in DISPERSE is replicated as content objects.
Here, content objects can either mean different parts of
content of a file or different files or different individual
requests or different class of traffic requests as the network
deems appropriate to implement. In general, large pieces of
content (e.g., video files) are split into smaller content objects,
which can be independently replicated and requested. This
allows the replication algorithms to work at a fine granularity
level, thus maximizing resource utilization and minimizing
fragmentation. State explosion is prevented by grouping large
sets of content objects into common namespaces. Due to the



4

absence of a central authority in charge of managing replication,
unavailability of a subset of nodes does not prevent DISPERSE
from making new copies of existing content. Strategies for
replicating content are discussed in the following section.

IV. RANDOMIZED NODE FAILURES

We first consider the case in which failures of back-end
nodes are independent and identically distributed, i.e., nodes
fail independent of each other, and probability of node failure is
identical for all the nodes. We refer to this model as randomized
node failure model.

Let U be the rate of upload (bandwidth) of content, and let D
be the rate of download. (The notations used in the analysis in
this section and their corresponding descriptions are provided
in Table I.) In this paper, we assume that D � U , as this is
a good representation of the behavior of popular applications
such as the World Wide Web and YouTube [27].

We indicate the number of back-end layer nodes in the
network with m, and the number of copies of each content
object with c. Because each back-end layer node stores only
one copy of each content object (storing multiple copies in the
same node provides no additional resilience to node failures),
we have c ≤ m.

It is common for service providers to allocate more band-
width to their servers than what is expected under average traffic
conditions to account for flash crowds [28]. This also follows
from the theory of large deviations of effective bandwidths,
where the capacity of a network is larger than the expected
traffic [29]. We therefore indicate the total bandwidth with λD,
where λ > 1 is the over-provisioning factor.

Let A be amount of bandwidth that has become unavailable
due to node failure. The remaining bandwidth in DISPERSE
for retrieving content is λD−A, and the portion of bandwidth
available to retrieve a content object is:

Pavailable =

{
λ− AD if A > D(λ− 1)
1 otherwise.

(1)

The number of failed back-end layer nodes, mf , can then be
obtained as mf =

⌈ A
λD ·m

⌉
. Content can be retrieved from

DISPERSE if any one of the m−mf nodes that has not failed
holds the required content object. Thus, when all nodes fail
with the same probability, independent of other nodes, the
probability that content can be retrieved from any back-end
layer node, Pcontent can be written as:

Pcontent(c) =

{
1− (mf

c )
(m

c )
if c ≤ mf

1 otherwise.
(2)

Therefore, the probability of retrieving content from DISPERSE
is:

Pdisperse = Pavailable · Pcontent(c). (3)

Although increasing the number of content copies increases
availability (see (2) and (3)), additional replication also leads to
increased storage and bandwidth costs. In the rest of this section,
we formally characterize the selection of the optimal number of
copies (indicated henceforth as c∗) as an optimization problem.

We first determine the amount of “utility” the network derives
from each additional copy.

Let Dnet = min(D, λD − A). The utility, i.e., the net
capacity available to the network to satisfy content requests
from consumers is ũ(c) = Dnet · Pcontent(c).

A. Without Delay Constraints

Because Pcontent is a monotonically increasing function of c,
we have that ũ(c) is also a monotonically increasing function of
c. Therefore, without further constraints, DISPERSE network
perceives maximum utility when infinite copies of the content
are made. However, the network incurs a cost for making and
storing each copy. This cost includes the storage, bandwidth,
computation, and any other consideration involved in making
new copies. We indicate this cost with α, and assume a linear
cost model. (Other convex models for cost are also possible,
and we leave their treatment as future work.) As a result, the
total cost incurred for making c copies of each content is αc.
The network incurs additional fixed cost, cfixed, that captures
other network issues like infrastructure, setting up the front-
end and back-end nodes, the links between the nodes in the
network, etc. Therefore, the net utility function, unet(c), can
be written as:

unet(c) = ũ(c)− αc = Dnet · Pcontent(c)− αc− cfixed. (4)

Since the fixed cost, cfixed does not depend on the decision
variable, c, it can be omitted from the optimization formulation.
The resulting net utility perceived by the network, ũnet(c), is
then given by:

ũnet(c) = ũ(c)− αc = Dnet · Pcontent(c)− αc. (5)

The network must then determine the value of c∗ that max-
imizes ũnet(c) in (5), i.e., which is optimal for the network.
In (2) and (5), the optimization is with respect to c, which is an
integer. Thus, maximization of ũnet(c) is an integer program,
which is NP hard [30].

To make this problem tractable, we assume that m � c
as motivated, for example, in [4]. Examples of systems that
satisfy this assumption include replica maintenance systems
[31], which had about 500 nodes and 3 replicas of content
and the Copysets system developed by Cidon et al. [32] which
makes 3 replicas of content in a network of 5000 nodes. A
more recent article [33] also justifies this assumption. Further,
we consider mf � c, i.e., the number of failed back-end
layer nodes is significantly larger than the number of copies
of content in the system. If mf � c, it corresponds to the
case when the probability of node failure is very small. In this
case, all copies available at any back-end node are accessible
irrespective of the number of copies of content made by the
network. Further, if c < mf (with c ≈ mf ), then the network
can always make additional mf−c copies to ensure that content
is available. Content replication implementations in [31] and
[32] showed cases when the number of failed nodes is about
60 % of the total number of nodes (which was about 300 in
[31] and 3000 in [32]), while the number of replicas were 3.
Essentially, the network must determine the optimal c∗ only
when mf � c so that the solution to making optimal amount
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TABLE I
NOTATION USED IN THIS PAPER.

Notation Description Notation Decription
m Number of back-end layer nodes mf Number of failed back-end layer nodes
U Rate at which content is uploaded D Rate at which content is retrieved
c Number of copies c∗ Optimal number of copies
λ Over provisioning factor A Failed bandwidth in DISPERSE

Pcontent Probability of content retrieval Pdisperse Probability of content retrieval
from DISPERSE back-end nodes in DISPERSE

Pavailable Fraction of the bandwidth available α Cost of storing unit content
to retrieve a content object in any DISPERSE back-end layer node

Z(c) Content retrieval delay from the DISPERSE back-end ũ(c) Benefit of storing c copies of
layer nodes to the DISPERSE front-end layer nodes content in DISPERSE back-end layer nodes

Dnet Available network bandwidth, defined ρ Cost of storing unit content in DISPERSE per unit
as Dnet = min(D, λD −A) of available bandwidth, defined as ρ , α

Dnet

of replicas of content is scalable. The integer constraint on c
is first relaxed using the following theorem.

Theorem 1: Using Stirling’s approximation (i.e., for any
large integer K, we have K! ≈

(
K
e

)K
[34]), ũnet(c) can be

written as:

ũnet(c) = Dnet

(
1− pc−1

f

)
− αc. (6)

Proof: Expanding (2) in terms of the factorials of the
arguments,

Pcontent = 1− mf !

(mf − c+ 1)!

(m− c+ 1)!

m!
. (7)

Rewriting (7) using Stirling’s approximation when m� c and
mf � c,

Pcontent = 1−
mc−1
f

(
1− c−1

mf

)mf−c+1

mc−1
(
1− c−1

m

)m−c+1 . (8)

Because mf

m = pf , and because for m� c and mf � c we
can apply limk→∞

(
1− x

k

)k
= e−x [34] we obtain:

Pcontent = 1− pc−1
f . (9)

This is used in (5) to obtain the objective function in (6).
Intuitively, (6) implies that in the randomized node failure

scenario, when m � c and mf � c, the number of failed
nodes is binomially distributed and hence, users fail to retrieve
content when all the back-end layer nodes that have a copy of
the content fail. The following theorem shows the uniqueness
of c∗.

Theorem 2: There is a unique value of c∗ that maximizes
ũnet(c) in (6).

Proof: From (6),

∂ũnet

∂c
= −Dnet · pc−1

f ln pf − α, (10)

and:

∂2ũnet

∂c2
= −Dnet · pc−1

f (ln pf )
2
. (11)

From the above, ∂
2ũnet

∂c2 < 0 indicating that ũnet(c) is a concave
function. Therefore, every local minimum obtained by solving

the first order necessary condition:

∂ũnet

∂c

∣∣∣∣
c=c∗

= −Dnet · pc
∗−1
f ln pf − α = 0,

i.e., pc
∗−1
f = − α

Dnet · ln pf
, (12)

is also a global minimum [35]. Moreover, the function, ũnet(c)
is a continuously differentiable function [34] of c. Therefore,
the solution obtained from the first order necessary condition
in (12), is unique [35].

From (12), the unique optimal value of c∗ is obtained as:

c∗ =

1 +
ln
(
− α
Dnet·ln pf

)
ln pf

+

, (13)

where [y]+ = max(0, y) for any real number y. To make an
integer optimal number of copies, we take the ceiling of the
optimal solution in (13). The following observations can be
made from (13) about c∗:
Observation 1) ∂c∗

∂α = 1
α ln pf

< 0, since pf < 1 (and hence,
ln pf < 0), when Dnet and pf are fixed, i.e., c∗ decreases as
α increases, i.e., DISPERSE must maintain fewer copies. This
is intuitively true because the network makes fewer copies as
the cost of making a copy increases.
Observation 2) ∂c∗

∂Dnet
= − 1

Dnet·ln pf > 0. In other words, c∗

increases as Dnet increases. Intuitively, this indicates that more
copies of the content can be made when more net bandwidth
(i.e., more resource) is available.

Next, we determine the range for α such that DISPERSE
performs a meaningful number of copies. In particular, we are
interested in determining the upper limit αmax on the cost of
making a copy, beyond which DISPERSE has no incentive
in making any copy of the content. The following theorem
addresses this problem.

Theorem 3: Let αmax , −Dnet · pf ln pf . Then, ∀ α >
αmax, no copies of content are made.

Proof: Since pf < 1 and hence, ln pf < 0, αmax > 0.
When α = αmax, c∗ = 0, from (13). Since c∗ decreases when
α increases (from Observation 1) mentioned above), we have
that ∀ α > αmax, c∗ = 0.

Conversely, we would like to identify a lower limit αmin to
the cost of replicating content that the network must incur, such
that α ≤ αmin makes the optimal number of copies degenerate.
The next theorem addresses this problem.
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Theorem 4: ∃ αmin > 0 such that the optimization solution
in (13) is valid only for α > αmin.

Proof: The optimization of c∗ requires that m � c and
mf � c. Therefore, ∃ cmax so that mf is comparable to c,
∀ c > cmax. Let the value of α that yields c = cmax from
(13) be αmin. As shown earlier, as α decreases, c∗ increases,
i.e., c∗ > cmax if α < αmin, thus rendering the optimization
solution degenerate.

B. Adding Delay Constraints

In this subsection, we establish how additional constraints
on the content retrieval delay incurred by DISPERSE affect
the optimal number of content copies. To this end, we consider
the delay from a front-end layer node to the ith back-end
layer node to be Xi, 1 ≤ i ≤ c (we only consider back-end
layer nodes that store the required content). The optimization
problem associated with the value of c∗ is therefore subject
to the constraints that the average delay, henceforth indicated
as Z(c), is below a specified threshold τ . Z(c) is given by
Z(c) = minci=1Xi, since the front-end layer node retrieves
content from the first back-end layer node with content that
responds, and Z(c) by Z(c) = E[Z(c)].

Since delay represents an additional constraint for the
problem of finding the optimal number of copies, the network
might have to make additional copies in order to satisfy all
constraints. Theorem 5 confirms this intuition. Before we
present Theorem 5, we introduce the following two lemmas.

Lemma 1: Consider a sequence of real numbers
y1, y2, . . . , yk. Let ỹ(k) = minki=1 yi. Then ỹ is a non-
increasing function of k.

Proof: Let ỹ(k) = minki=1 yi. Then ỹ(k+1) = mink+1
i=1 yi=

min(ỹ(k), yk+1). Either ỹ(k+1) = ỹ(k) (if ỹ(k) ≤ yk+1) or
ỹ(k+1) = yk+1 (if ỹ(k) > yk+1). Therefore, in both cases
ỹ(k+1) ≤ ỹ(k). Hence, ỹ is a non-increasing function of k.

Lemma 2: Z(c) is a non-increasing function of c.
Proof: If c is an integer, the proof follows from Lemma 1.

For real values of c, Z(c) = Z(dce) Therefore, if c1 > c2,
dc1e ≥ dc2e and hence, Z(c1) ≤ Z(c2), from Lemma 1 and
hence, Z(c1) = E [Z(c1)] ≤ Z(c2) = E [Z(c2)].

Let ĉ be the optimal number of copies made by the network
under delay constraints. Then ĉ is the solution to the following
optimization problem:

ĉ = arg max
c
ũnet(c), (14)

where ũnet(c) is define by (5), and subject to the constraint
Z(c) ≤ τ . The following theorem not only verifies the intuition
that the network has to make additional copies of the content to
satisfy the delay constraints, but also provides the quantitative
value of the number of copies.

Theorem 5: The value ĉ that maximizes ũnet(c), defined by
(5) subject to the delay constraint Z(c) ≤ τ , is:

ĉ = max(c∗, c̃), (15)

where c̃ is the value of c that satisfies Z(c̃) = τ .
Proof: Let c̃ ≤ c∗. Then by Lemma 2, Z(c∗) ≤ Z(c̃) = τ ,

thus satisfying constraint Z(c) ≤ τ . Since c∗ maximizes the

objective function ũnet(c) from (12),

ĉ = c∗, when c̃ ≤ c∗. (16)

Let c̃ > c∗. Then, from Lemma 2, Z(c∗) > τ , violating
constraint Z(c) ≤ τ . Then ĉ = arg maxc≥c̃ ũnet(c).

From (10), ∂ũnet(c)
∂c > 0 (i.e., ũnet(c) is an increasing

function of c) for c < c∗ and ∂ũnet(c)
∂c < 0 (i.e., ũnet(c) is

a decreasing function of c) for c > c∗. Therefore, the value of
c that maximizes ũnet(c) for c ≥ c̃ > c∗ is

ĉ = c̃, when c∗ < c̃. (17)

Theorem 5 follows by combining (16) and (17).
Theorem 5 implies that the number of copies must increase
as the delay constraint becomes more stringent (i.e., as τ
decreases). However, from (6), c � c∗ implies that ũnet(c)
decreases. Therefore we next determine whether a stringent
delay constraint can make the optimal number large to the
point that the results is negative net utility for the network.
This is an important issue, because under these conditions the
network should not make copies of the content. The following
theorem addresses this issue.

Theorem 6: ∃ τmin > 0 such that if τ < τmin, then the
optimal strategy for the network is not to make any new copies.

Proof: Let ũnet(c
∗) < 0. The highest net utility experi-

enced by the network is negative, i.e., the cost incurred by
the network in making additional copies outweighs the utility
perceived by the network. As a result, the network has no
incentive in making additional copies, even when there is no
delay constraint, i.e., when τ →∞. Therefore, here τmin is a
positive real number.

Let ũnet(c
∗) > 0. From (10), ∂ũnet(c)

∂c < 0 (i.e., ũnet(c) is a
decreasing function of c) for c > c∗. Let czero be the value of
c so that ũnet(czero) = 0. Let τmin = Z(czero). Therefore, for
τ = τmin, c∗ = czero and hence, when τ < τmin, c∗ > czero,
by Theorem 5. Then ũnet(c

∗) < 0. On the other hand, c = 0
implies ũnet = 0. Therefore, the network is better off not
making any copies of the content.

C. Numerical Evaluation of the Optimal Number of Copies

In this subsection, we compute the optimal number of content
copies in DISPERSE, based on the analysis presented above.
Fig. 2 shows the optimal number of copies made as a function
of ρ , α

Dnet
, i.e., ρ is the ratio of the cost per unit of available

bandwidth. We consider three different orders of magnitude
of ρ: (1) ρ ∼ 10−6, in Fig. 2(a); (2) ρ ∼ 10−4, in Fig. 2(b);
and (3) ρ ∼ 10−3, in Fig. 2(c). Figs. 2(a)-2(c) are generated
using m = 3000 back-end layer nodes. The optimal number
of copies is between 5 and 15, while the number of failed
nodes is mf = 300, 600, 900, 1200, when pf = 0.1, 0.2, 0.3,
0.4, respectively, justifying the assumption, c� mf , used in
(6). Figs. 2(a)−2(c) also indicate that the optimal number of
copies is mainly affected by the probability of node failure,
and just marginally by ρ. For instance, for ρ = 5 · 10−6, c∗ is
15, 12, 10, and 7 for pf = 0.1, 0.2, 0.3, and 0.4, respectively.
When ρ = 5 ·10−4, c∗ is 10, 9, 7 and 5, for pf = 0.1, 0.2, 0.3,
and 0.4, respectively. Finally for ρ = 5 · 10−3, c∗ is 7, 6, 4,
and 3, for pf = 0.1, 0.2, 0.3, and 0.4, respectively. Essentially
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for three orders of magnitude of decrease in ρ, the number
of copies increases by a 2× factor. Thus, the optimal number
of copies is far more sensitive to pf than to ρ, justifying the
need for an architecture resilient to node failures as proposed
in this work.
D. Comparison with CDN

To compare the performance of DISPERSE with that of CDN,
we measure two parameters: (i) the percentage of requests for
which the network was unable to deliver the content and (ii)
the delay in retrieving content evaluated as the average number
of nodes the network must query to retrieve the content. The
percentage of failed content retrieval requests in DISPERSE is
evaluated as (1− Pdisperse) · 100, where Pdisperse is obtained
from (3). To determine the percentage of failed requests in
CDNs, we proceed as follows. We evaluate the optimal number
of copies, c∗ for DISPERSE (from (13)). Since each copy of the
content is hosted in a different server, we consider c∗ number
of CDN servers and assume the probability of node failure, pf ,
to be identical both for CDN as well as for DISPERSE (so that
we ensure we compare networks with identical properties).

There are currently several large deployments of CDNs,
which differ in several architectural and design choices (see,
e.g., [36]). In order to present the effectiveness of the proposed
architecture, we choose to compare with Akamai [4]-[6], which
is one of the most popular CDNs [37]. In Akamai, first the
network attempts to retrieve content from a CDN server and
if that attempt fails, then it attempts to retrieve it from the
origin server. If that attempt also fails, then it is considered as
a failure in retrieving content. The network does not attempt
to retrieve content from other CDN servers by the very nature
of the design of CDNs and instead directly chooses to retrieve
content from the origin server [3], [38]-[40].

Thus, the network fails to receive content if it fails to retrieve
content from a CDN server (given by the

(
c∗

1

)
1
c∗ pf term in

(18)) and it fails to retrieve it from the origin server (given by
the porigin term in (18)). Typically, the origin server is backed
up against failures better than CDN servers by techniques like
IP Anycast [41], [42]. Therefore, we take porigin to be on order
of magnitude less than the probability of failure of a CDN
server, pf . The probability of failure to retrieve content in
CDN, PCDN, is then given by:

PCDN =

(
c∗

1

)
· 1

c∗
pf · porigin = pfporigin. (18)

Fig. 3(a) shows the comparison of the percentage of content that
the network fails to recover in CDN (taking porigin =

pf
10 ) and

in DISPERSE, which shows that the DISPERSE architecture
results in a reduction by about 5 orders of magnitude, providing
improved resilience to node failures.

We then proceed to study the tradeoff that DISPERSE has
to bear to provide the advantage of improved resilience. For
DISPERSE, the average number of back-end nodes that must
be queried to retrieve content is:

Ndisperse =

c∗∑
k=1

k(1− pf )pk−1
f + c∗pc

∗

f

=
1− (c∗ + 1)pc

∗

f + c ∗ pc
∗+1
f

1− pf
. (19)

For CDNs, the number of queried nodes is 1 if the CDN server
hosting content does not fail and 2 if the CDN server hosting
content fails (irrespective of what happens to the origin server).
Therefore, the average number of nodes queried in CDN,

N cdn = 1− pf + 2pf (1− pf ) + 2p2
f = 1 + pf . (20)

Fig. 3(b) depicts the average delay (in terms of average number
of nodes queried by the network to retrieve content) for different
node failure scenarios. As observed from the figure, the delay
is lower for CDN than that for DISPERSE. This is because,
in CDNs query a maximum of two nodes (the CDN server
and the origin server). However, DISPERSE queries as many
nodes until it reaches a back-end node that hosts the content
and has not failed.

However, Fig. 3(b) indicates that for low values of node
failures (up to 50−60 % node failires), DISPERSE queries only
one additional node to retrieve content, compared to CDNs.
For larger values of node failures (around 90%) the delay in
DISPERSE increases by one order of magnitude compared to
CDN. However, from Fig. 3(a), at this network condition, CDN
fails to recover content with a significantly high probability
while DISPERSE recovers content almost surely. Therefore
DISPERSE provides high resilience to node failures without
significantly increasing the delay in retrieving content.

The discussions in this subsection are based on a randomized
node failure model where all nodes have same failure rate
and same cost of replicating different content and all content
have equal priority. The next section discusses optimal content
replication in a setting where nodes have different failure rates
and contents have different priorities.

V. TARGETED NODE FAILURES

When different content objects have different priorities and
value, and when nodes have different amount of resources
allocated to them, they are also likely to fail with different
probabilities. For example, an adversary might focus on
attacking specific nodes, rather than random subsets of nodes.
We call this setting, targeted node failure scenario, where in,
the benefit of storing content j in node i is given by:

ũnet
ij = D

(j)
net ·

(
1− p(i)

f

)
− αij ,

1 ≤ j ≤ k,
1 ≤ i ≤ m

, (21)

where D(j)
net represents the benefit of storing content object j

which, in turn, includes the “importance”, or value, of content
object j. In (21), p(i)

f is the probability that node i fails, and
αij is the cost of storing content object j in node i. Let content
j utilize xij amount of resources in node i, Xi be the total
amount of resources available at node i and Sj be the set of
nodes that hold content j. Then, the objective is:

Maximize over all Sj ,
k∑
j=1

∑
i∈Sj

ũij , (22)

subject to
k∑
j=1

xij ≤ Xi, 1 ≤ i ≤ m, (23)

which is an NP-hard problem in general [30]. However, in our
setting this problem can be reduced to a minimum-cost network
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Fig. 2. Optimal number of copies made in the DISPERSE back-end layer nodes, for the randomized node failure model, for m = 3000 nodes. The ratio
between cost and bandwidth, ρ, is varied to different orders of magnitude. Results show that the optimal number of copies is sensitive to node failure probability,
pf , and less sensitive to ρ, as change in two orders of magnitude in ρ change the optimal number of copies by 2–5. The optimal number of copies c∗ ∼ 5–15,
while the number of failed nodes is mf = 300, 600, 900, and 1200, for pf = 0.1, 0.2, 0.3, and 0.4, respectively, justifying the assumption that c� mf .
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Fig. 3. Comparison of the performance of DISPERSE and CDN in terms of failure to retrieve content and delay in retrieving content. While computing delay,
we evaluate the number of nodes queried by the network to retrieve the content. This also includes requests timeout.

flow problem [43]. The minimum cost flow approach has been
used before as a solution for secure multipath routing [44],
and to find a minimum cost set of nodes to execute a false
data injection attack [45]. However, to our knowledge, we are
the first to leverage efficient solutions for the minimum cost
flow approach to content replication.

We instantiate the minimum-cost network flow problem on
the bi-partite graph [46] depicted in Fig. 4. One set of nodes
represent content (red nodes in Fig. 4), while another set of
nodes represents DISPERSE back-end layer nodes (blue nodes
in Fig. 4). Nodes s and t are dummy source and sink nodes.
Edges from s to content nodes have infinite capacity and zero
cost. Edges from content nodes to DISPERSE back-end layer
nodes have cost αij −D(j)

net ·
(

1− p(i)
f

)
, and infinite capacity.

Edges from back-end layer nodes to the sink have cost zero,
and capacity Xi. The edge from the sink to the source has
cost −∞, to avoid the degenerate solution of all flows being
zero (see [43] for details). Content j is considered to be stored
in node i if the flow in edge (j, i) is positive.

Theorem 7: Content object j is stored in node i if and only
if there is a flow augmenting path through edge (j, i).

Proof: If content object, j is assigned node i, then a
positive flow is added on edge, (j, i), indicating that the path
s→ j → i→ t is a flow augmenting path.

Source	  
s	  

Sink	  
t	  

Content	  Objects	  
Back	  end	  Nodes	  

1	  

2	  
3	  

i	  

k	  

1	  

2	  

3	  

j	  

m	  

Fig. 4. Network model used to solve objective function (22), subject to
constraints in (23). Node s is a dummy source, and node t is a dummy sink.

If there is a flow augmenting path from s→ j → i→ t, then a
positive flow is added on the edge, (j, i) indicating that content
object, j is stored in node, i.

When some nodes fail, or if new content objects arrive, then
flows are re-assigned on edges to incorporate the new content
object or to account for changing node failures and costs. A re-
assignment is equivalent to adding negative flow. For instance,
in Fig. 4, let content object 3 be assigned to node 2. If node
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(c) Lowest Priority Content

Fig. 5. Performance of DISPERSE for targeted node failures when content objects of all priorities are equally likely. The legends, s = 1, s = 2 and s = 4
represent the values of the s−parameter for the Zipf distribution of the node failures.

2 fails then the content in content object 3 is re-assigned to
another node by identifying a flow augmenting path from s to
t passing through content object 3. This is equivalent to first
assigning a negative flow on the edge from content object 3
to node 2 and adding the same amount of positive flow from
content object 3 to the new node it is assigned to. The cost
for the negative flow is also negated to ensure the same value
of the cost-flow product. The next two theorems identify the
maximum number of reassignments.

Theorem 8: Let f be a current cost flow in the network
and let f∗ be the optimal cost flow. Then, f∗ − f can be
decomposed into a set of at most |E| negative cost cycles,
where |E| is the number of edges in the network.

Proof: Consider any feasible flow f , and the optimal flow
f∗. The optimal flow vector is obtained from the feasible flow
vector by saturating unsaturated edges. Also, to satisfy flow
conservation constraints, it is essential to find a negative cost
directed cycle and modify the flow by the same amount on
all edges on the cycle. Hence f∗ can be obtained from f by
a sequence of identifying negative cost directed cycles and
saturating at least one edge in each cycle. The flow f∗−f can
be seen as a feasible flow in the residual graphs, which can
also be decomposed into a sequence of negative cost directed
cycles saturating at least one edge at a time. Since there are
|E| edges, the flow f∗ − f can be decomposed into at most
|E| negative cost directed cycles.

Theorem 9: There are at most b |E|2 c re-assignments.
Proof: Let the number of negative cost directed cycles

be Ω. It is noted that for the problem under consideration, a
negative cost directed cycle can be of length 4 to 6. For a
cycle of length, γ, γ/2 edges in the cycle correspond to a
re-assignment. Therefore, C number of cycles can result in
bC2 c re-assignments, which, from Theorem 8, is b |E|2 c.
From the algorithms specified in Chapter 9 in [43], the
complexity of the minimum cost flow problem for a system with
k conent objects and m nodes is O

(
(k +m)3 log(k +m)

)
.

A. Numerical Evaluation of the Optimal Number of Copies

To evaluate the performance of the minimum cost flow
approach, we perform simulations on Ubuntu Linux platform.
We generate a network of m = 3000 nodes and k = 100
content objects. Let rj be the priority index of content object,

j. This is an integer in the set, {1, 2, · · · , 10} where in, a larger
index represents a content object with higher priority. Content
objects are assigned priority indices, rj , as follows. We use
the built-in random number generator in the library, which is
uniformly distributed in [0, 1]. This then is multiplied by 10
and the final floating point number is truncated to obtain an
integer between 0 and 9. Then 1 is added to make the integer
take values between 1 and 10.

The failure probabilities of nodes, p(i)
f , 1 ≤ i ≤ m

are generated according to a Zipf distribution [47], i.e.,
p

(i)
f = 1 −

1
is

ζ(s) , where ζ(s) =
∑m
j=1

1
js is the Riemann’s

Zeta function [34]. Our simulations are performed for s = 1,
s = 2 and s = 4. The average node failure probability is
defined as the average of all p(i)

f ’s.
The cost, αij , 1 ≤ i ≤ m, 1 ≤ j ≤ k is gener-

ated by generating random numbers uniformly distributed in[
0, 10−6

(
1− p(i)

f

)
rj

]
. This not only ensures that content

objects with higher priority incur higher average costs than
those with low priority when stored in the same node, but also
ensures that the same content object incurs higher cost when
stored in a node which is less likely to fail than when stored
in one that is more likely to fail.

We then run 100,000 simulation experiments by repeating
instances of the random numbers generated as described above.
For each instance, we randomly permute the order of the failure
probabilities of nodes using the random permutation algorithm
in [?] so that successive simulations create significantly differ-
ent scenarios. Content objects are then stored in different nodes
according to our minimum cost flow optimization framework.
Then, node failures are generated as follows: For each node, i,
a random number is generated using the built-in library (which,
by default, is uniformly distributed in [0, 1]). A node, i, is
considered to “fail” if the generated random number is below
p

(i)
f . Once a node fails, re-assignments are performed according

to the cost flow framework. Failure of content retrieval is said to
occur if a content object in a failed node cannot be re-assigned
to another node.

Fig. 5 shows the performance of the minimum cost flow
algorithm for the targeted node failure scenarios in comparison
with the randomized node failure scenarios. We compared the
content retrieval probabilities for all content types (Fig. 5(a)),
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content with the highest priority (Fig. 5(b)) and content with the
lowest priority (Fig. 5(c)). As shown in Fig. 5(a), at 30% node
failure scenario, the minimum cost flow approach results in a
content retrieval probability of 0.3 for the homogenous network
and 0.39, 0.54 and 0.69 for s = 1, 2, and 4, respectively,
leading to an improvement of 1.3× to 2.3×. When s increases,
the probability of retrieving content decreases. This is because,
as s increases, some nodes are less likely to fail, and therefore
all content objects compete to be stored in the same node,
However, limited resource availability forces content to be
stored in nodes that are more likely to fail, thus decreasing the
the probability of content retrieval. All these scenarios perform
better than the randomized node failure case, because we store
content in a failure-aware manner.

We then proceed to study the impact of the minimum cost
flow approach on the highest and lowest priority content objects.
For highest priority content object (Fig. 5(b)), as s increases the
probability of content retrieval increases. This is because high
priority content is stored in nodes that are less likely to fail, and
therefore more likely to be retrieved. However, the difference
between benefit and cost is not monotonic with respect to
s. Fig. 5(b), shows that up to a node failure probability of
25–30%, s = 4 leads to better performance than s = 2.
However, when node failure is above 30%, s = 2 leads to
better performance. This is because while the network attempts
to store highest priority content in nodes with the lowest node
failure probabilities, resource constraints associated with high
failure rates result in high priority content stored in nodes
with higher failure probabilities. The increase in the content
retrieval probability results in a trade-off or penalty in the
form of increase in loss of content for low priority content
types, as observed from Fig. 5(c). As expected, larger values
of s result in worse performance of content retrieval for low
priority content type, because this content is stored in nodes
with higher probabilities of failure.

We finally proceed to study two other cases of distribution
priorities for content objects, in addition to the uniform distri-
bution studied thus far: (1) There are more low priority content
objects than high priority content objects. To achieve this, we
generate content object with priority, rj ∈ {1, 2, · · · , 10}, with
probability, 11−rj

1+2+3+···+10 =
11−rj

55 . Since we consider lower
index, rj to indicate lower priority, this generates high priority
objects with lower probability. (2) Then we generate higher
priority content objects with higher probability. To achieve this,
we generate content objects with priority rj ∈ {1, 2, · · · , 10}
with probability, rj

55 . Since higher value of rj represents a
higher priority, this method generates high priority content
objects with higher probability.

Fig. 6 shows the performance of DISPERSE with targeted
node failures when the amount of low priority content is larger
(Fig. 6(a)) and when amount of high priority content is larger
(6(b)). As observed from Fig. 6(a), when low priority content
is more likely, DISPERSE with a node failure probability
according to a Zipf distribution with s = 1 still out-performs
the content replication strategy adopted for the network with
randomized node failures. Specifically, when 40% nodes fail,
the content replication strategy discussed in Section IV (i.e.,
assuming randomized node failures) yields a content retrieval

probability of 0.52, whereas, for the targeted node failure
scenario with s = 1, the content retrieval probability is about
0.78, which is an improvement of 50% (or a factor of 1.5×).
However, when more nodes fail for s = 2 and s = 4. When
content with different priority are placed in different nodes
(according to their failure probabilities and costs), high priority
content can still be recovered successfully but low priority
content is lost. Since there is more low priority content over
all, the content retrieval probability decreases and is lesser
compared to assigning content without consideration to the
different node failure probabilities and content priorities.

The nature of the flow maximization algorithm discussed
in this section, enhances availability of high priority content.
Therefore, when there is more high priority content, it results on
a larger content retrieval probability, over all (as observed from
Fig. 6(b)). For an average node failure rate of 40%, the con-
tent replication mechanism using the non-linear optimization
problem discussed in Section IV (i.e., assuming randomized
node failures) results in a content retrieval probability of about
33%, where as, this increases to about 83% when deploying
the flow maximization algorithm discussed in this section. This
is an increase by a factor of 2.5×.

VI. CONCLUSION

We introduced DISPERSE, a novel distributed architecture
for content replication that provides resilience against node
failures. DISPERSE reduces the failure of content retrieval
by five orders of magnitude compared to CDNs, without
significantly increasing content retrieval delay. Our analysis
shows that the optimal number of content replicas is more
sensitive to node failures than to resource availability and
cost of storage. We consider this a strong justification for
DISPERSE. When content was hosted in nodes according to
their priorities, resources availability, and susceptibility of the
node to failure, content availability further increases by a factor
of 1.3× to 2.3×. Specifically, the content availability for high
priority content was increased, with a trade-off of reduced
availability of low priority content.

Our future research directions include addressing issues of
cache replacement and cache consistency. These problems
have been addressed in various contexts, including in NDN
(see, e.g., [48], [49]), on which DISPERSE is based. Although
these techniques are directly applicable to DISPERSE, further
investigation can be done to optimize these approaches for
node failure scenarios.
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