
Securing Instrumented Environments over Content-Centric Networking: the
Case of Lighting Control and NDN

Jeff Burke
University of California, Los Angeles

jburke@remap.ucla.edu

Paolo Gasti
New York Institute of Technology

pgasti@nyit.edu

Naveen Nathan Gene Tsudik
University of California, Irvine
{nnathan,gts}@uci.edu

Abstract—Instrumented environments, such as modern building
automation systems (BAS), are becoming commonplace and are
increasingly interconnected with (and sometimes by) enterprise
networks and the Internet. Regardless of the underlying commu-
nication platform, secure control of devices in such environments is
a challenging task. The current trend is to move from proprietary
communication media and protocols to IP over Ethernet. While
the move towards IP represents progress, new and different
Internet architectures might be better-suited for instrumented
environments.

In this paper, we consider security of instrumented environments
in the context of Content-Centric Networking (CCN). In particular,
we focus on building automation over Named-Data Networking
(NDN), a prominent instance of CCN. After identifying security
requirements in a specific BAS sub-domain (lighting control), we
construct a concrete NDN-based security architecture, analyze
its properties and report on preliminary implementation and
experimental results. We believe that this work represents a
useful exercise in assessing the utility of NDN in securing a
communication paradigm well outside of its claimed forte of
content distribution. At the same time, we provide a viable (secure
and efficient) communication platform for a class of instrumented
environments exemplified by lighting control.

I. INTRODUCTION

The Internet has proven to be a tremendous global success.
Billions of people worldwide use it to perform a wide range of
everyday tasks. It hosts a large number of information-intensive
services and interconnects millions of wired, wireless, fixed and
mobile computing devices.

Core ideas of today’s Internet were developed in the 1970-s,
when telephony – i.e., a point-to-point conversation between
two entities – was the only successful example of effective
global-scale communication technology. The world has changed
dramatically since then, and the Internet now has to accommodate
new services and applications as well as different usage models.
To keep pace with changes and move the Internet into the future,
several research efforts to design new Internet architectures have
been initiated in recent years.

Named-Data Networking (NDN) [18] represents one of
these efforts. It exemplifies Content-Centric Networking (CCN)
approach [11], [15], [17]. NDN explicitly names content instead
of physical locations (i.e., hosts or network interfaces) and thus
treats content as a first-class entity. NDN also stipulates that
each piece of named content must be digitally signed by its
producer. This allows decoupling of trust in content from trust
in the entity that might store and/or disseminate that content.

NDN’s long-term goal is to replace TCP/IP. In order to
succeed, NDN must prove that it can be used to efficiently
implement all kinds of communication commonly performed

over IP today and envisaged for the near future. NDN’s forte is
clearly content distribution [15]. Recent and on-going research
has shown that NDN fares well with respect to real-time [14]
and anonymous communication [4]. NDN also offers some
advantages over IP for less content-centric communication
paradigms, such as cyber-physical systems [3] and group
communication [22]. In particular, better security and explicit
(as well as more meaningful) naming and discovery capabilities
motivate deployment of such applications over NDN.

This paper is focused on securing lighting control systems
running over NDN. Lighting control systems are a special case
of Building Automation Systems (BAS). The latter provide
a hardware and software platform for control, monitoring
and management of: heating, ventilation and air conditioning
(HVAC), lighting, water, physical access control and other
building components. Prominent current trends in BAS include:
(1) increasing use of IP and Ethernet for industrial control,
(2) convergence of previously separate networks for IT and
automation, enabled by this new common infrastructure, and
(3) increasing popularity of cyber-physical systems that take
advantage of internetworking of physical and digital elements
to bring about new types of applications.

At the same time, growing emphasis on energy management
and the “smart grid” suggest that physical network segregation
is not a viable long-term approach for securing instrumented
environments. Besides lower complexity and greater interoper-
ability, deployment of BAS over public networks has certain
advantages. First, there is no need to design, deploy and manage
a separate network infrastructure, since BAS can benefit from
high-speed, low-latency, fault-tolerant networks already deployed
for general-purpose communication needs. Second, BAS can be
physically distributed: devices might span buildings and sites
with applications accessing them from multiple locations.

While some types of BAS might tolerate variable delays up
to a few seconds for actuating or sensing, latency requirements
for lighting control are stricter and represent an overlap with
industrial and process control. To provide a sense of “real-time”
interaction, architectural lighting might require execution of
commands within a few hundred milliseconds from pressing
a switch. By designing and implementing a secure lighting
framework suitable for such low-latency systems coupled with
a meaningful namespace, we target a hybrid design space that
corresponds to the so-called “thin waist” for highly heterogenous
BAS of the future.

Our goal is to use NDN to name and address all components
of the system. Component names should relate to their identity

2

or function. This is in contrast to an addressing hodgepodge that
spans layers and systems (e.g., VLAN tag, IP gateway address,
protocol port #, fixture address), as in current implementations.
Furthermore, NDN naming can be used to reflect access
restrictions, rather than require a separate policy language. The
main motivation is that a namespace is consistently accessible
within any NDN-compliant device or process. This obviates the
need for application-specific access control protocols.

Organization. We proceed with NDN overview in Section
II, followed by the description of a base-line lighting control
protocol in Section III, which also introduces our framework.
Implementation details and performance evaluation results are
discussed in Section V. Next, Section VI summarizes related
work. The paper concludes with future work in Section VII.

II. OVERVIEW OF NDN
NDN [18] is a communication architecture based on named
content. Rather than addressing content by its location,
NDN refers to it by name. A content name is com-
posed of one or more variable-length components, sepa-
rated by “/”. For example, the name of a CNN news con-
tent might be: /ndn/cnn/news/2011aug20. Large pieces
of content can be split into fragments with predictable
names: fragment 137 of a YouTube video could be named:
/ndn/youtube/video-749.avi/137.

Since the main abstraction is content, there is no explicit
notion of “hosts” in NDN. Communication adheres to the pull
model: content is delivered to consumers only upon explicit
request. A consumer requests content by sending an interest
packet. If an entity (a router or a host) can “satisfy” a given
interest, it returns the corresponding content object. Interest and
content are the only types of packets in NDN. A content packet
with name X in NDN is never forwarded or routed unless it is
preceded by an interest for name X.1

When a router receives an interest for name X and there are no
pending interests for the same name in its PIT (Pending Interests
Table), it forwards the interest to the next hop, according to
its routing table. For each forwarded interest, a router stores
some state information, including the name in the interest and
the interface on which it was received. However, if an interest
for X arrives while there is already an entry for the same name
in the PIT, the router collapses the present interest (and any
subsequent ones for X) storing only the interface on which it was
received. When content is returned, the router forwards it out
on all interfaces from which an interest for X has been received
and flushes the corresponding PIT entry. Note that, since no
additional information is needed to deliver content, an interest
does not carry a “source” address. Any NDN router can provide
content caching. Consequently, content might be fetched from
routers caches, rather than from its original producer. (Hence,
no “destination” addresses are used in NDN).

NDN deals with content authenticity and integrity by making
digital signatures mandatory for all content. A signature binds
content with its name, and provides origin authentication no

1Strictly speaking, content named X′ 6= X can be delivered in response to an interest
for X, but only if X is a prefix of X′.

matter how, when or from where it is retrieved. Public keys
are treated as regular content: since all content is signed, each
public key content is effectively a “certificate”. NDN does not
mandate any particular certification infrastructure, relegating
trust management to individual applications. Private or restricted
content in NDN is protected via encryption by the content
publisher.

III. LIGHTING CONTROL OVER NDN

In this section we introduce our framework for secure lighting
control over NDN. Our setup involves four parties: a configu-
ration manager (CM), one or more fixtures (Fix), one or more
applications (App) and an authorization manager (AM). CM is in
charge of the initial fixture configuration. This includes, on a per-
fixture basis: assigning a fixture its NDN namespace, installing
a trusted public key (owned by AM) that identifies the local
domain, and giving a fixture its identity represented by a unique
public key. Note that, in NDN parlance, “namespace” refers to
content published by some entity, whereas, “identity” refers to
a public key associated with some entity that publishes content.
AM determines which applications are allowed to access each
fixture, signs applications’ public keys and (optionally) issues
signed access control lists. While CM and AM represent distinct
functions, in practice, they are likely to be physically co-located.

A. Base-Line Protocol
We start by observing that NDN can be easily used to securely

implement basic lighting control without requiring any new
features or components. When application App needs to send a
command to fixture Fix, the base-line protocol works as follows:

1) App creates (and signs) a new content object cmd contain-
ing the desired command.

2) App issues an interest intA with a name in Fix’s namespace
that references the name of cmd.

3) Fix receives intA, stores it in its PIT, and issues an interest
intF for the name of cmd.

4) App receives intF and responds with cmd.
5) Fix receives cmd, (1) checks its access control list to

determine if App is authorized to execute the command
in cmd, (2) verifies the signature of cmd, (3) executes the
command, and (4) replies with an acknowledgement (from
here on abbreviated as “ack”) in the form of a new signed
content object.

6) App receives the ack and verifies its signature.
The main drawback of this protocol is its high latency and
bandwidth overhead: a single command requires 4 rounds and
4 messages, instead of the ideal 2 rounds/messages. Thus, this
approach is a poor match for delay-sensitive lighting control.

Alternatively, Fix could continuously issue interests that
solicit App’s commands. This way, whenever App issues a
new command, it does so by simply satisfying the most recent
interest. This approach, however, introduces new problems.
First, Fix would have to always issue one interest per each
App allowed to control it. In an installation with multiple
applications (m) interacting with a large number of fixtures (n),
the overhead of periodic O(mn) interests would be significant.

3

Also, an application would be unable to generate a rapid burst
of commands to the same fixture, since App can only issue a
new command after it receives an interest from Fix.

B. Whither Authenticated Interests?
We now consider another approach that, at least in principle,

violates the tenets of NDN. Recall that NDN stipulates that all
content objects must be signed. Each entity implementing the
NDN protocol stack must be able to verify content signatures.
Interests, however, are not subject to the same requirement. One
reason for this design choice is efficiency: public-key signature
generation and verification is expensive. Moreover, signatures
from different parties prevent straightforward interest aggregation.
Another reason is privacy: traditional public-key signatures carry
information about the signer. There are, however, applications
that could benefit from authenticated interests and control of
building systems like lighting seems to be one.

Authenticated interests can be implemented using both public
key and symmetric authentication mechanisms, i.e., signatures
and message authentication codes (MACs), respectively. For the
sake of generality, we refer to the output of both as authentication
tags. Due to the flexibility of NDN naming, where name
components can be application-determined and are opaque to the
network, an authentication tag can be placed into an NDN name
as a bona fide component thereof. This way, an authentication
tag becomes transparent to NDN routers and only the target of
the command would interpret and verify it. Regardless of their
type, computation of authentication tags must be randomized to
ensure uniqueness, based on either nonces or timestamps.

In general, using authenticated interests is fairly straightfor-
ward. CM configures each fixture with a specific namespace
and AM assigns a set of rights to each application, tied with
the application public key or to a symmetric key shared with
the fixture. The name reflected in an authenticated interest
would contain three parts: (1) prefix part (used for routing)
that corresponds to the fixture namespace, (2) actual command,
and (3) randomizer (nonce or timestamp) along with the
authentication tag computed over the rest of the name:

/fixture-namespace︸ ︷︷ ︸
(1)

/command︸ ︷︷ ︸
(2)

/randomizer||auth-tag︸ ︷︷ ︸
(3)

The idea is that, when Fix receives such an interest, it verifies
the authentication tag, executes the command and replies with a
signed ack as content. The first task (verifying the authentication
tag) is simple only if one application controls the fixture or if
part 1 of the name somehow uniquely identifies the requesting
application. Whereas, if multiple applications are allowed to
issue the same class of commands to a given fixture and use
the same type of authentication tags, the fixture would need
to determine the exact application by repeatedly verifying the
authentication tag. This could translate into costly delays. This
issue can be easily remedied by overloading NDN names even
further and including another explicit part that identifies the
requesting application (or its key).

A drawback to both this and the base-line approach is that
the fixture needs to sign, in real-time, the acknowledgement,
which is represented as content. Since a typical fixture is a

relatively anemic computing device, signature generation may
involve non-negligible delays.

IV. SECURE LIGHTING CONTROL FRAMEWORK

Based on the preceding discussion, we conclude that a more
specialized approach to secure lighting control over NDN is
necessary in order to obtain reasonable performance while
adhering to NDN principles. To this end, we construct a security
framework that includes:
• A trust model wherein public keys are associated with NDN

namespaces. The framework relies on this functionality to
determine the entity that “owns” a particular namespace.
For example, this allows us to ensure that a content object
issued by a fixture in response to a command has been
generated by the correct party.

• A syntax for key attributes and access control policies that
binds a public key with its attributes, as determined by the
signer (certifier) of this key.

• A protocol that defines how fixtures are initialized and how
applications and fixtures handle authenticated commands.

In the design of our framework, we consider an adversary that
can control the communication channel between App and Fix.
The goal of the adversary is to (1) produce a command of its
choice that is executed by Fix; (2) undetectably delay, or replay
legitimate commands from App; (3) provide an acknowledgment
to App for a command that has not been executed.

A. Trust Model
Our trust model allows an entity (e.g., applications and

fixtures) to publish content only in its namespace or any of
its children. (nameA is a child of nameB if the latter is a
prefix of the former).

Zero or more public keys are associated with each namespace.
A content object published under namespace nameA must be
signed using the key associated to nameA or any of its ancestors.

A trusted third party (TTP) – e.g., AM – generates the key-
pair Kroot = (pkroot, skroot) and distributes pkroot. This public
key is used as root of trust; a signature on a content object
computed using skroot is always accepted. In order to associate
pkP , belonging to producer P , with namespace nameP , TTP
publishes, under nameP/key, a content object containing pkP .
P can delegate a key sk′P 6= skP to sign content in names-

pace nameP/sub-namespace by publishing the corresponding
public key pk′P under nameP/sub-namespace/key. This
mechanism allows TTP to delegate some of its certification
capabilities to each producer.
P can prove to anyone its ownership of a key linked to nameP

through a simple challenge-response protocol. The challenger
issues an interest for a content object with name nameP/nonce
where nonce is a fresh random string selected by the challenger.
P is able to respond with a valid content object only if it owns
the signing key linked to nameP , one of its ancestors, or TTP’s
signing key.

B. Key Attributes & Access Control Policies
Attributes of a public key are expressed using the name under

which such key is published. Each attribute is a name/value pair

4

expressed as two consecutive namespaces: the first indicates a
key attribute name, and the second – its value.

Recall that an NDN content object is bound to its name by
a public-key signature. According to our trust model, such a
signature must be issued either by the TTP or by the owner of
the namespace that contains the public key. Applications can
define their own set of attributes. For example, a public key pkP
published under /uci/ics/domain/lighting-domain-1/
appname/light-board-1/access/full-access/

expires/20151231235959Z/key specifies that pkP belongs
to application light-board-1 in domain lighting-domain-1, that
has “full access” to fixtures in such domain.

C. The Protocol
We now introduce the protocol for controlling NDN-connected

light fixtures. The protocol is composed of three sub-protocols:
bootstrapping, application authorization and control.

Bootstrap. New fixtures must be paired with CM and
bootstrapped in order to be able to receive commands from
applications. The pairing process consists of the distribution
of a symmetric key from Fix to CM. For example, in our
implementation CM scans a barcode on Fix’s enclosure, that
represents a symmetric key factory-installed on Fix.

Next, CM initializes Fix. Fixture initialization consists of
selecting an NDN name for Fix, (loosely) synchronizing CM and
Fix clocks and installing (on Fix) a trusted public key that belongs
to AM. This public key identifies the domain under which Fix
operates. CM then communicates a signing key-pair to Fix.2

This key-pair is linked to Fix’s namespace, and it represents
the identity of Fix. Additionally, CM can specify the NDN
name of one or more ACLs that Fix must use to determine
applications’ permissions. At this time, Fix also generates a
long-term secret master key kFix. This key is optionally used
later to derive application-specific symmetric keys (i.e., kApp)
for authentication purposes. Once Fix is correctly initialized, it
responds with the current time and a hash of all the information
exchanged during bootstrap.

Application Authorization. AM grants control privileges to an
application by signing the latter’s public key. Given pkApp be-
longing to App and intended permissions permApp, AM first con-
structs a namespace nameApp containing “access/permApp”,
as specified in Section IV-B. Then it signs pkApp and publishes
it (as content) under nameApp. Any fixture under control of AM
can verify that App owns permission permApp by asking it to
prove ownership of namespace nameApp, as in Section IV-A.

Control Protocol. The protocol is designed for resource-
constrained fixtures interacting with a large number of applica-
tions. Thus, we aim to minimize computation and communication
costs and amount of memory required to perform interest authen-
tication. We avoid storing per-application long-term information
(e.g. application keys) on each fixture. A fixtures stores a constant
amount of state for each application currently interacting with
it. We emphasize that, in order to issue and verify commands,

2Fix can also generate a signing key-pair and communicate the public key to CM.

applications and fixtures do not need to communicate with either
CM or AM.

Application App, that owns a key distributed under
nameApp/key, issues an interest with command cmd for fixture
Fix with NDN name nameFix as follows:

nameFix/nameApp/cmd/auth-token

The string “cmd” represents a fixture-specific command.
Since our framework does not specify any particular for-
mat for commands, this string is simply treated as an
opaque binary field. For example, a simple command could
be: “on” or “off”, while a more complex one could be:
“intensity/+10/rgb-8bit-color/F0FF39”.

The field auth-token encodes the command authentication
token, constructed as: state || authenticator. The first part
represents state information required to prevent timing and replay
attacks. It is, in turn, composed of: sequence number, timestamp
and estimated round-trip time (RTT) between App and Fix. The
authenticator part is a signature or a MAC. In either case, it
is computed over: “nameFix/nameApp/cmd/state”. App signs
its commands using the private counterpart of nameApp/key.
The key used to compute and verify commands authenticated
with MAC is negotiated between App and Fix as detailed below.

When a fixture receives the interest above, it determines
whether to execute cmd, as follows:

1) Examines attributes in nameApp to determine whether App
is allowed to issue cmd.

2) If available, uses a local or remote ACL specified by CM
during the bootstrap phase.

3) Verifies the state of the command. First determines
whether the interest is current. Then, if it has no record
of previous commands from App, Fix extracts the se-
quence number from auth-token and stores it as:
(nameApp, sequence number). Otherwise, it checks that
the stored sequence number is lower than the one in
auth-token.

4) Verifies authenticator – signature or MAC on the
interest. In the former case, Fix retrieves public key
nameApp/key and stores it in its local cache.

If a pair (nameApp, sequence number) stored by Fix is not
updated for a pre-determined amount of time, it is considered
stale and deleted. This way, at any given time, a fixture only
retains state information related to active applications.

D. Symmetric Authentication.
By default, fixtures and applications authenticate commands

and acks using public-key signatures. However, for performance
reasons, they can switch to MAC-s at anytime, which requires
establishing a shared secret key. Recall that, at bootstrap, Fix
generates a long-term secret key kFix. When App asks Fix
to switch to symmetric authentication, the latter uses kFix to
compute an application-specific key kApp. After verifying that
App owns the namespace nameApp (see Section IV-A), Fix
computes kApp = PRFkFix

(nameApp), where PRF refers to
a suitable cryptographic pseudo-random function. Then, Fix
sends kApp to App encrypted under public key nameApp/key.

5

Note that Fix does not need to store these application-specific
symmetric keys: it can compute kApp from kFix whenever needed.
Therefore, the amount of symmetric-key-related state stored by
Fix does not depend on the number of authorized applications.

E. Ack Authentication

As usual with instrumented systems, a device being controlled
(light fixture in our setting) needs to provide feedback after pro-
cessing a command. In the context of NDN, this naturally results
in a closed-loop control system and allows NDN routers to flush
PIT entries corresponding to processed commands (interests).
For obvious security reasons, acks must be authenticated. In
resource-constrained environment of light fixtures, the cost of
computing per ack public-key signatures is quite high, especially
considering that a fixture might receive numerous closely-spaced
commands. For this reason, we propose an NDN extension
allowing fixtures to efficiently produce authenticated acks.

A natural and efficient alternative to public-key signatures
are (symmetric) MACs. An application and a fixture could
share a key, and use to authenticate acks, i.e., replace a
signature on the content object (that carries the ack) with a
MAC. Unfortunately, this approach is unworkable if fixtures
and applications communicate through a public network. Since
MACs are not publicly verifiable, intervening NDN routers
cannot authenticate MAC-d content and may simply drop it.

Next, we describe a technique that allows public verifiability
of acks without requiring public-key operations by fixtures,
applications or NDN routers.

Encryption-based Authentication. This technique assumes
that App and Fix share a symmetric key k, itself derived from
Fix-App shared key kApp, which is generated at bootstrap time.
To begin, App generates a random s-bit value x and, using a
block cipher E with block size s, computes y = Ek(x), z = H(x)
where H is a collision-resistant hash function and E is used
in the ECB mode. App includes the pair (z, y) as part of the
command to Fix. Recall that this command is represented as
an NDN interest and, on the path to Fix, it leaves state in all
intervening NDN routers.

Upon receiving an interest, Fix extracts x′ from y as x′ =
E−1k (y) and re-computes z′ = H(x′). If z′ 6= z, then Fix aborts;
otherwise, it issues an ack in the form of an empty content
object with x as a signature.

Although x is clearly not an actual signature, this technique
allows public verifiability. An NDN router that observes the (ack)
content object carrying x must have a corresponding interest
(and therefore z) in its PIT. It can efficiently determine the
relationship between the interest and the content by checking
whether H(x)=z.

Commands that are not acknowledged can be retransmitted
until they time out. Once a command expires, it must be reissued
using a new challenge. Despite public verifiability, App cannot
prove to a third party that it successfully interacted with Fix.
This is because App can unilaterally produce any number of
challenge/response pairs without any interaction with Fix.

Operation Intel ARM
Core2Duo Cortex A8

Create auth. command (RSA-1024, pub exp 3) 1.981 ms 21.553 ms
Verify command (RSA-1024) 0.096 ms 0.435 ms
Compute HMAC key from Fix’s secret 0.005 ms 0.046 ms
Create auth. command (HMAC-SHA256) 0.006 ms 0.067 ms
Verify command (HMAC-SHA256) 0.013 ms 0.152 ms

TABLE I
PERFORMANCE OF RSA AND HMAC AUTHENTICATED COMMANDS.

V. PROTOTYPE EVALUATION

In order to evaluate the performance of the proposed architecture,
we implemented a library – called NameCrypt – designed for
lighting control in a theatrical environment. We also deployed
it in an actual theatrical lighting installation. In this setting,
applications and lighting fixtures interact over a LAN.

Our setup involves three applications: (1) a sequencer that
outputs pre-generated patterns, (2) a controller that uses algorith-
mic patterns and (3) a fader. These applications control eleven
lights, connected to five embedded devices. The target platform
of the lighting fixture is an off-the-shelf embedded device based
on the Gumstix Overo Air [12] computer-on-a-module. This
device is running a 600 MHz Texas Instruments OMAP 3503
ARM Cortex-A8 CPU with 256MB RAM.

A. Performance Evaluation
Experiments were performed on a commodity laptop –

MacBook with 2.53GHz Intel Core2Duo CPU – that runs the
sequencer, controller and fader, and on a low-powered embedded
system representative of a lighting fixture or a low-power fixture
controller. Table I shows the results of micro-benchmarks in
command authentication. Time required to generate an RSA
signature on the Intel platform is comparable to typical LAN
latency and does not significantly affect the performance of the
whole protocol. Verification is below average network latency on
both platforms. For this reason, we believe that features provided
by digital signatures and their relative low cost justifies their
use in an environment where commands are generated on non-
constrained device. On the other hand, benchmarks show that
low-power devices are not well-suited for generating real-time
signatures on commands. In this case, we recommend the use
of HMAC.

Symmetric authentication incurs negligible performance im-
pact. Fixtures must generate a symmetric key for each application
starting from their secret. This requires far less than a millisecond
on our test devices. Similar to command authentication, digital
signatures do not introduce any significant delay on the Intel
platform, while signature generation is relatively expensive on
the ARM. Whenever viable, our tests show HMAC provides
adequate performance. However when public verifiability is
required and standard signatures are too expensive, encrypted
challenges are an appealing option, as shown in Table II.

VI. RELATED WORK

Most current protocols descend from legacy control architectures
based on serial communication [16]. These legacy architectures
rely on a separate communication infrastructure. In this transition
from serial to IP, vendors have rarely implemented additional
security measures [19]. As a consequence, such protocols must

6

Operation Intel ARM
Core2Duo Cortex A8

Sign content object (RSA 1024, pub exp 3) 2.018 ms 26.418 ms
Verify content object (RSA 1024, pub exp 3) 0.046 ms 1.301 ms
Authenticate/verify (HMAC) 0.006 ms 0.070 ms
Encrypted challenge – create 0.003 ms 0.043 ms
Encrypted challenge – answer 0.001 ms 0.015 ms
Encrypted challenge – verify 0.001 ms 0.015 ms

TABLE II
PERFORMANCE ANALYSIS OF ACK AUTHENTICATION.

be often run over VLANs, VPNs, IPSec or physically segregated
networks [13], [19]. Physical segregation is often difficult or
even impossible when protocols are running over RF. In this
case several of them have been show to be insecure [19].

Most modern lighting control protocols descend from or
implement DMX512 [5] by encapsulating DMX payload over
modern media such as wired/wireless Ethernet [2] or RF [6].
This has resulted in various competing technologies such as Art-
Net [2], ACN [16], ETCNet/ETCNet2 [7] which bridge lighting
systems and allow them to coexist with newer technology and
integrate into BAS.

ACN [16] is a set of ANSI standards which define a protocol
suite for controlling lighting, networked entertainment devices,
and existing control systems. It has been designed to address
several shortcomings of existing lighting control protocols,
specifically (1) having both an open protocol and specification,
(2) media agnostic control, and (3) generalizing to any device
that can be controlled [16]. ACN defines several protocols on
top of UDP, and therefore naturally extends to any medium that
can carry IP communication. Security is not addressed in this
standard, which assumes that ACN data is transported over a
secure network.

Alongside aforementioned lighting control protocols, there are
proprietary vendor-centric solutions, such as Philips Dynalite and
Philips KiNET. To the best of our knowledge, neither Dynalite
nor KiNET offer any form of authentication or encryption
between devices.

In contrast with lighting, BAS protocols interconnect mul-
titudes of sensors and actuators across a building, including
HVAC, building controls, as well as home and office lighting.

BACNet [1] is an open standard specifying a BAS protocol at
the backbone level. BACNet supports encryption and authentica-
tion, although it has been shown to be insecure (see [19], [13],
[21], [8], [10]). DES is the only supported block cipher, and
authentication is susceptible to man-in-the-middle attacks [19].

KNX began as an open standard converging several existing
standards in home automation and intelligent buildings. As
outlined in [9], [8], [10], KNX provides no data security. The
control communication to the fixture is limited to a rudimentary
access control scheme. An extension proposed to improve the
security of KNX is EIBsec [9].

LonTalk is the communication protocol for the LonWorks BAS.
It supports several media types, such as RF, Infrared, Coaxial
cable, and Fiber Optics. As detailed in [19], [20], [9], [8], [10],
LonTalk provides minimal security. Each entity is limited to
a single authentication key of up to 48 bits. All entities must
share the same key if they want to verify messages amongst

each other. Significant overhead is incurred for authentication
as the protocol requires a 4-round challenge-response protocol
invoked for each message the sender transmits.

VII. SUMMARY AND FUTURE WORK

This paper focused on securing instrumented environments
connected via Content-Centric Networking (CCN), motivated
by the increasing integration of Building Automation Systems
(BAS) with enterprise networks and the Internet. In particular,
we explored lighting systems over Named-Data Networking
(NDN), a prominent instance of CCN. We identified security
requirements in lighting control and constructed a concrete NDN-
based security architecture. We then reported on the prototype
implementation and experimental results.

Clearly, this work represents only the initial step towards
assessing suitability of NDN for communication settings far from
its forte of content distribution. Much more work is needed to
securely adapt NDN to other types of instrumented environments.

Within the lighting domain, we plan to extend our current
design to support multicast communication – i.e., controlling
multiple fixtures with a single message.

REFERENCES

[1] ANSI. Standard 135-1995, BACnet a data communication protocol for
building automation and control networks, 1995.

[2] Specification for the Art-Net 3 Ethernet Communication Standard.
http://www.artisticlicence.com. Retrieved Feb. 2012.

[3] J. Burke, A. Horn, and A. Marianantoni. Authenticated lighting control
using named data networking. Technical report, UCLA, Oct. 2012.

[4] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. ANDaNA: Anonymous
named data networking application. In NDSS, 2012.

[5] DMX512-A. http://www.opendmx.net/index.php/DMX512-A.
Retrieved Feb. 2012.

[6] Lighting systems made easy a guide to lighting installations.
http://www.leprecon.com/catalogs/
280075BLightingMadeEasy.pdf. Retrieved Feb. 2012.

[7] Electronic Theater Controls (ETCNet).
http://www.etcconnect.com/. Retrieved Feb. 2012.

[8] W. Granzer and W. Kastner. Security analysis of open building automation
systems. In SAFECOMP, pages 303–316, 2010.

[9] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus. Security in
networked building automation systems. In IEEE WFCS, pages 283–292,
Jun. 2006.

[10] W. Granzer, F. Praus, and W. Kastner. Security in building automation
systems. IEEE IES, 57(11):3622–3630, Nov. 2010.

[11] M. Gritter and D. Cheriton. An architecture for content routing support in
the internet. In USENIX USITS, 2001.

[12] Gumstix Overo Air. http://www.gumstix.com/store/
product_info.php?products_id=226. Retrieved Feb. 2012.

[13] D. Holmberg and D. Evans. Bacnet
wide area network security threat assessment.
http://fire.nist.gov/bfrlpubs/build03/art034.html,
Jul. 2003.

[14] V. Jacobson, D. Smetters, N. Briggs, M. Plass, J. Thornton, and R. Braynard.
VoCCN: Voice-over content centric networks. In ReArch, 2009.

[15] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard.
Networking named content. In ACM CoNEXT, 2009.

[16] W. Jiang, Y. Jiang, and H. Ren. Analysis and prospect of control system
for stage lighting. In IEEE CISP, volume 8, pages 3923–3929, Oct. 2010.

[17] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. In ACM
SIGCOMM, volume 37, pages 181–192. ACM, 2007.

[18] Named data networking project (NDN). http://named-data.org.
Retrieved Feb. 2012.

[19] N. Okabe, S. Sakane, K. Miyazawa, K. Kamada, A. Inoue, and M. Ishiyama.
Security architecture for control networks using IPsec and KINK. In IEEE
SAINT, pages 414–420, 2005.

7

[20] C. Schwaiger and A. Treytl. Smart card based security for fieldbus systems.
In IEEE ETFA, volume 1, pages 398–406, Sept. 2003.

[21] J. Zachary, R. Brooks, and D. Thompson. Secure
integration of building network into the global internet.
http://fire.nist.gov/bfrlpubs//build03/art027.html,
Oct. 2002.

[22] Z. Zhu, J. Burke, L. Zhang, P. Gasti, Y. Lu, and V. Jacobson. A new
approach to securing audio conference tools. In AINTEC, 2011.

	Introduction
	Overview of NDN
	Lighting Control over NDN
	Base-Line Protocol
	Whither Authenticated Interests?

	Secure Lighting Control Framework
	Trust Model
	Key Attributes & Access Control Policies
	The Protocol
	Symmetric Authentication.
	Ack Authentication

	Prototype Evaluation
	Performance Evaluation

	Related Work
	Summary and Future Work
	References

