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ABSTRACT
As fast and accurate sequencing of human genomes becomes afford-
able, it is expected that individuals will soon be able to carry around
copies of their sequenced DNA, using it for medical, identification,
and social purposes. This will undoubtedly prompt a wide range of
new and interesting genomic applications. However, the very same
progress raises some worrisome privacy issues, since a genome rep-
resents a treasure trove of highly personal and sensitive information.
Some recent research explored privacy-preserving personal genomic
operations by applying (or customizing) cryptographic protocols
based on techniques such as: conditional oblivious transfer, garbled
circuits, and homomorphic encryption. In this paper, we take this
line of work a step further by investigating real-world practical-
ity and usability of (as well as interest in) some of these methods.
Motivated by both medical and social applications, we aim to test
viability of privacy-agile computational genomic tests in a portable
and pervasive setting of modern smartphones. We design a personal
genomic toolkit (called GenoDroid), implement it on the Android
platform, assess its performance, and conduct a pilot usability study
that yields some interesting results.

Categories and Subject Descriptors: E.3 [Data Encryption]: Se-
cure Multi-party Computation

General Terms: Security.

Keywords: Privacy, DNA, Cryptographic Protocols.

1. INTRODUCTION
During the last several decades, the scientific community made

significant efforts to improve accuracy, and reduce the cost of, Full
Genome Sequencing (FGS), making prices drop significantly faster
than Moore’s law would otherwise predict [56, 65]. (See, for in-
stance, the $3B, 13-year Human Genome Project [41] and [44, 66].)

A genome represents the entirety of a specific organism’s biologi-
cal information. The availability of fully sequenced – and not only
human – genomes naturally opens up new and exciting frontiers
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in numerous fields, including bioinformatics, genomics, genetics,
and medicine. In particular, the vision of personalized medicine has
been one of the driving forces behind FGS research. Its goal is a
set of genomic tests that assess individuals’ risk for major diseases,
such as diabetes and cancer, as well as at targeted screening and
preemptive intervention [20]. Indeed, genetic information already
guides doctors toward accurate diagnosis and treatment. However,
while some diseases (e.g., Huntington’s) are caused by mutations
in a single gene and are easily tested in vitro, the risk of developing
other diseases depends on multiple genes, which makes them diffi-
cult to identify. Low-cost genetic sequencing provides researchers
with much more genomic information, and enables them to identify
new genetic variations as well as run more complicated tests.

Full genome sequencing also facilitates other new applications,
such as as paternity, ancestry and genetic compatibility testing. Al-
though less critical than personalized medicine, these more “social”
applications are no less exciting, partly because of their (expected)
broader appeal. Current lab-based, physical versions of these tests
are both time-consuming and privacy-invasive. Performing them
computationally makes them much more enticing and accessible.

More generally, we believe that in not-too-distant future, numer-
ous genomic tests and operations will no longer be performed in
vitro, but in silico, i.e., using digitized genomes and specialized
computational techniques [37], possibly without the involvement of
third-party testing facilities.

1.1 Motivation
Despite numerous benefits of low-cost FGS, a number of serious

ethical and privacy concerns have emerged [23, 24, 69]. Besides
uniquely identifying its owner, a fully sequenced human genome
contains information about one’s ethnic heritage, phenotypic traits,
and predisposition to numerous diseases and conditions, including
mental disorders [17, 31, 33]. A virtual treasure trove of fright-
eningly personal and sensitive information is contained in one’s
genome. Traditional approaches to health care privacy, such as
de-identification or aggregation [38, 49], are not helpful in this con-
text, since the genome is the ultimate identifier [50, 51]. A recent
study [64] shows that a person’s DNA could even be inferred from
RNA data (often published in research repositories) even though
it was previously assumed not to yield any information about its
owner.

Consequently, in order for computational genetic tests on fully
sequenced genomes to become accepted and commonplace, efficient
and privacy-preserving versions of such tests need to be developed.
This poses a number of challenges:

1. Privacy: Given its extreme sensitivity, an individual should
ideally never disclose personal genomic information. How-



ever, one should be able to allow others (e.g., individuals,
doctors, or researchers) to run specific genetic tests that yield
nothing beyond their intended results.

2. Accuracy: Computational genomic tests should guarantee
accuracy and reliability comparable to current (and widely
accepted) lab-based in-vitro equivalents. For example, a soft-
ware implementation of the paternity test on fully sequenced
genomes should offer at least the same confidence as its in-
vitro counterpart, currently admissible in a court of law.

3. Efficiency: Computational genomic tests should incur mini-
mal storage, communication, and computational costs, while
satisfying privacy requirements associated with a given test
type.

4. Portability and Accessibility: Since a genome is arguably the
most sensitive type of personal information, how and where
should a user’s genome (that contains about 3 · 109 letters) be
stored? In the cloud? On a home PC? In a physician’s office?
On a smartphone? At the health insurance site? A closely
related issue is: how should genomes be accessed?

5. Usability: Computational genomic tests should be usable
by, and meaningful to, regular non-tech-savvy users. This
translates into non-trivial questions, such as: how much un-
derstanding should be expected from a user running a test?
What information (and at what level of granularity) should be
presented to the user as part of a test and as its outcome?

1.2 Goals and Outline
Although widespread and affordable availability of fully sequenced

human genomes makes it increasingly appealing to perform compu-
tational genetic tests, it also raises concerns in terms of simultane-
ously guaranteeing security, privacy and efficiency. The security re-
search community has been attuned to the emergence of full genome
sequencing and a few specialized privacy-preserving cryptographic
techniques have been proposed in recent literature. (See Section
8 for a discussion of related work). However, to the best of our
knowledge, practicality and usability of such techniques have not
been assessed thus far. This is the main goal of this paper.

By carefully designing privacy-preserving mechanisms that em-
ulate in-vitro, highly accurate tests, our work demonstrates that
secure computational genomic tests are viable today. We present
a framework and an implemented toolkit, called GenoDroid. It
incorporates several techniques offering efficient privacy-preserving
genomic testing that meets most aforementioned challenges. In
order to demonstrate ubiquity, GenoDroid runs on commodity An-
droid smartphones (though it is not limited to this platform). We also
conducted a pilot user study to explore usability and acceptability
of proposed techniques.

We focus on the following tests:

• RFLP- and SNP-based Paternity Tests establish whether
or not a male individual is the biological father of another
individual, using genetic fingerprinting based on either Re-
striction Fragment Length Polymorphisms (RFLP) or Single-
Nucleotide Polymorphism (SNP).

• Ancestry and Genealogical Testing allows individuals to
trace their lineage by analyzing their genomic information.
The scope of such tests is often quite heterogeneous. Ancestry
testing is useful in a myriad of health-related applications (e.g.,
susceptibility to diseases common to certain populations). It is
also increasingly used in social or recreational scenario, e.g.,
to map one own genetic heritage or find common ancestry.

• Personalized Medicine (PM) Testing provides a significant
paradigm shift in health care, aiming at a more precise and
powerful type of medicine [74], where diagnosis, treatment,
and medication is tailored to the precise genetic makeup of the
individual patient. For example, the US Food and Drug Ad-
ministration (FDA) already recommends testing for mutations
in the thiopurine S-methyltransferase (tpmt) gene, prior to pre-
scribing 6-mercaptopurine and azathioprine – two drugs used
for treating childhood leukemia and autoimmune diseases [4].

Due to extreme sensitivity of human genomic material, for each
considered test, we design and implement a privacy-preserving
protocol that securely realizes the corresponding computation. Our
protocols only yield the test results and do not disclose individuals’
genomic information. Furthermore, if the the nature of the test
involves sensitive information (e.g., it is a trade secret or is covered
by a patent), the contents of the test are also concealed.

Organization: The rest of the paper is structured as follows: Sec-
tion 2 presents a genomics primer and a few cryptographic building
blocks, while Section 3 introduces the GenoDroid framework. Then,
Section 4, 5, and 6 present privacy-preserving paternity, ancestry,
and personalized medicine testing, respectively. Section 7 presents
a usability assessment of one of our smartphone applications and
Section 8 surveys related work. Finally, we conclude in Section 9.

2. BACKGROUND
This section provides background information on genomics, our

notation, and cryptographic tools used in the rest of the paper. (It
can be skipped with no loss of continuity.)

2.1 Genomics Primer
Genomes represent the entirety of an organism’s hereditary in-

formation. In humans, the genome is encoded in double-stranded
DeoxyriboNucleic Acid (DNA) molecules, consisting of two long
complementary polymer chains of four simple units called nucleo-
tides, represented by the letters A, C, G, and T. The human genome
comprises (about) 3 billion nucleotides. The first genomes to be se-
quenced were those of a virus and a mitochondrion in late 70’s [62].
Since then, Genomics has made exceptional progress toward under-
standing the genome – for more information, we refer to [12]. We
now overview some key concepts used in the rest of the paper.

Restriction Fragment Length Polymorphisms (RFLPs) refers to
a difference between samples of homologous DNA molecules that
come from differing locations of restriction enzyme sites, and to
a related laboratory technique by which these segments can be il-
lustrated. In RFLP analysis, the DNA sample is broken into pieces
(digested) by restriction enzymes and the resulting restriction frag-
ments are separated according to their lengths by gel electrophoresis.
Thus, in short, RFLP provides information about the length (and
not the composition) of the DNA sub-sequences occurring between
known sub-sequences that are recognized by particular enzymes.
Although it is being progressively superseded by inexpensive DNA
sequencing technologies, RFLP analysis was the first DNA profiling
technique inexpensive enough to see widespread application and is
still in use today. RFLP probes are frequently used in genome map-
ping and in variation analysis, such genotyping, forensics, paternity
tests, hereditary disease diagnostics. (For more details, see [55].)

Single Nucleotide Polymorphisms (SNPs) are the most common
form of DNA variation occurring when a single nucleotide (A, C, G,
or T) in the genome differs between members of the same species
or paired chromosomes of an individual [68]. The average SNP
frequency in the human genome is approximately 1 per 1,000 nu-



cleotide pair. (See [54] for a complete collection of all known SNPs)
SNP variations are often associated with how individuals develop
diseases and respond to pathogens, chemicals, drugs, vaccines, and
other agents. Thus SNPs are key enablers in realizing personalized
medicine [18]. Moreover, they are used in genetic disease and disor-
der testing, as well as to compare genome regions between cohorts
in Genome-Wide Association Studies (GWAS) [14].

2.2 Notation
In the rest of this paper, we denote a digital copy of an individ-

ual’s fully sequenced genome by G={(b1||1), . . . , (bn||n)}, where
bi ∈ {A, G, C, T, –}, n is the genome length, and “||” denotes con-
catenation. The “–” symbol is needed to handle DNA mutations
corresponding to deletion, i.e., where a portion of a chromosome is
missing [48]. It is also used when the sequencing process fails to
determine a nucleotide. In case of insertion mutation in the genome,
e.g., an ‘A’ is added between positions x and x+1, we add (A||x||1).
Similarly, if insertion involves multiple nucleotides. Since inser-
tions are rare in human genomes (in the order of 0.1%), we do not
consider them in this paper. We use the |str| to denote the length of
string str and |A| to denote the cardinality of setA. Finally, r ← G
indicates that r is chosen uniformly at random from set G.

2.3 Cryptography
We now overview a set of cryptographic notions and tools used in

the rest of the paper. For ease of exposition, we omit the basics and
refer to [45, 52] for other notions, such as encryption and signature
schemes, hash functions, and number-theoretic assumptions.

Private Set Intersection Cardinality (PSI-CA) [32]: a protocol
between server with input S={s1, . . . , sw}, and client with input
C={c1, . . . , cv}. At the end of the protocol, client learns |S ∩ C|.
PSI-CA securely implements: FPSI-CA : (S, C) 7→ (⊥, |S ∩ C|).

Authorized Private Set Intersection (APSI) [28]: a protocol be-
tween server with input S = {s1, . . . , sw}, and client with input
C={c1, . . . , cv} and Cσ={σ1, . . . , σv}, where σi = Sig(skCA, ci),
for i = 1, . . . , v, and authorization authority CA. At the end of the
protocol, client learns: ASI

def
= S ∩ {ci | Ver(pkCA, σi, ci) = 1}.

APSI securely implements: FAPSI : (S, (C, Cσ)) 7→ (⊥,ASI).

Secure Hamming Distance (SHD): a protocol between server with
input string S, and client with input string C such that |S| = |C|
At the end of the protocol, client learns HD(S, C) (where HD de-
notes Hamming Distance, i.e., the number of positions at which the
corresponding symbols are different). SHD securely implements:
FSHD : (S, C) 7→ (⊥,HD(S, C)).

Adversarial Model. We use standard security models for secure
two-party computation, which assume adversaries to be either semi-
honest or malicious. Hereafter, the term adversary refers to protocol
participants, since actions of outside adversaries can be mitigated
via standard network security techniques. Following [34], proto-
cols secure in the presence of semi-honest adversaries assume that
parties faithfully follow all protocol specifications and do not misrep-
resent any information related to their inputs, e.g., size and content.
However, during or after protocol execution, any party might (pas-
sively) attempt to infer additional information about other party’s
input. Whereas, security in the presence of malicious parties allows
arbitrary deviations from the protocol. To ease exposition, security
arguments in this paper are made with respect to semi-honest partici-
pants; however, efficient extensions to malicious participant security
have already been developed for our cryptographic building blocks.
We consider these extensions to be out of the scope of this paper.

Security & Unlinkability. Primitives’ definitions above follow
standard secure computation syntactic framework [34]. In the semi-
honest model, this corresponds to considering an ideal implemen-
tation where a trusted third party (TTP) receives the inputs of both
parties and outputs the result of the defined function. Protocols are
secure if, in the real implementation of the protocol (without a TTP),
each party does not learn more information than in the ideal imple-
mentation. Nonetheless, semi-honest security definitions might not
capture the concept of unlinkability that refers to the impossibility
for a party to learn whether any two protocol executions are related,
i.e., executed by the other party on the same input.

3. GENODROID FRAMEWORK
As discussed in Section 1, full genome sequencing is revolution-

izing diagnosis and treatment of certain diseases while producing
new and more effective techniques for personalized medicine as
well as ancestry and genealogy discovery. The next logical step
is to transform paper-based research results into actual working
computational tests available to individuals. As mentioned above,
this poses challenges pertaining to usability, portability, accuracy,
security, privacy and efficiency. To this end, our work focuses on
the construction of efficient and privacy-preserving techniques that
allow individuals to perform genomic tests while disclosing only the
required minimal information to other parties. Furthermore, we aim
at ubiquitous availability of genomic tests, by designing protocols
that run on current (off-the-shelf) Android smartphones.1

3.1 Smartphone Rationale
We chose to focus on the smartphone environment for several rea-

sons, chief among them is the pervasive proliferation of smartphones
into many spheres of everyday life [16] and their tendency to take
over tasks previously relegated to desktop or laptop computers [5].
Furthermore, the demand for smartphone use in health care applica-
tions is skyrocketing [59, 63]. Modern smartphone’s unparalleled
portability makes it a true anytime-anywhere computing device and
its highly personal nature (even laptops are often shared) motivates
using it to store private information, such as cryptographic keys,
PINs/passwords as well as one’s genome.

Furthermore, computational power and storage capacity of to-
day’s smartphone are comparable to those of a laptop from a few
years ago. Also, smartphone vendors and mobile OS developers
(e.g., Apple, Google, RIM, and Microsoft) provide programming
environments that facilitate quick and efficient implementation of
complex applications. From the user’s perspective, smartphones
are relatively easy to use and are customarily carried almost every-
where. Thus, we believe that smartphones represent a viable and an
appealing platform for performing personal genomic computations.

Clearly, the smartphone is not the only choice. A genome could
also be stored at a physician’s office. However, an individual may
visit many types of medical specialists and/or change physicians.
Secure storage, replication (e.g., if a specialist needs a copy) and
migration (e.g, from one physician to another) are not trivial issues.
Moreover, with health care costs already very high, the public would
be unhappy to bear the costs of additional insurance that doctors
would incur in order to protect their patients’ DNA.

Another option is to store and process genomes on a more pow-
erful computing device, e.g., a desktop or a laptop. In both cases,
portability is a major issue since a desktop is generally stationary,
whereas a laptop, though portable, is much more burdensome to
carry than a smartphone. This would rule out or limit social and

1 Source code for all GenoDroid applications and framework components is
available at http://sprout.ics.uci.edu/projects/privacy-dna.
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recreational types of genomic tests (e.g., paternity or genetic com-
patibility). As mentioned above, desktops and laptops can be shared
by multiple users, thus, making them more vulnerable to attacks.

Alternatively, genomes could be stored in the increasingly omni-
present and (hopefully) benevolent cloud. Like a smartphone, the
cloud allows anytime-anywhere access and offers computation ser-
vices, in addition to storage. However, the cloud also requires
reliable and pervasive Internet connectivity for its clients. A cloud
vendor is also subject to unpredictable service outages and, of course,
DoS/DDoS attacks. Moreover, cloud vendor privacy breaches can
and should be expected; therefore, storing highly sensitive personal
information in the cloud is perhaps not advisable. Even if a genome
is stored in its encrypted form, unless and until fully homomorphic
encryption becomes practical, complex computation on encrypted
genomes stays out of reach. Naturally, in the course of a genomic
test, an encrypted genome can be communicated from the cloud to
the user’s smartphone and the latter could perform the necessary
computation. The main problem with this scenario is its cost; recall
that a genome includes about 3 · 109 symbols. Finally, there is an
issue of encryption longevity: a genome encrypted with, say, 128-bit
(equivalent) key today is likely to remain secure for a few (20-25?)
years. However, assuming that the cloud never "forgets" its hosted
data, we need to wonder how secure would the same encryption key
be 30 or 40 years from now.

3.2 Framework Structure
GenoDroid incorporates a number of building blocks for privacy-

preserving genomic computations, e.g., decoding DNA strings pro-
duced by sequencing machines, privacy-preserving protocols, as
well as auxiliary components, such as mutual authentication and
device (smartphone) pairing.

One key feature of GenoDroid is its extensibility: although this
paper focuses on only three concrete genomic tests, we are confident
that our framework facilitates the development of other types of tests,
without re-implementing basic components from scratch.

Overview. The framework currently supports two flavors of ge-
nomic tests: (i) both parties run on input of their respective entire
genomes, e.g., to perform a paternity or ancestry test, or (ii) one
party’s input is an entire genome, while the other’s – is a short
sequence of letter-position pairs, e.g., a disease marker for personal-
ized medicine tests. (Note that, in the latter case, letters do not have
to be consecutive.)

GenoDroid integrates offline non-interactive pre-processing (e.g.,
on a desktop or a laptop), with online interactive computation on
smartphones. Thus, computation occurs in two phases: (1) the entire
genome is pre-processed, yielding a representation suitable for a
given genomic test, and (2) the actual test is performed as a two-
party protocol, where at least one party uses a smartphone. The pre-
processing phase is particularly appealing since it separates software
development from the knowledge of biological details that are not
directly related to specific tests. For example, all genomic tests
discussed in this paper, as well as most others, require conversion of
raw output produced by a sequencing machine to a “single-string
representation”.2

3.2.1 Pre-processing Components

Genomic data conversion. Independent of the specific test, we
need to convert data produced by the sequencing machine in genetic

2Incidentally, to the best of our knowledge ours is the first concrete imple-
mentation of this functionality. In fact, standard genomic tools rely on a
multi-string representation for human genomes, and all publicly available
fully-sequenced genomes are encoded using multi-file formats (e.g., [2]).

laboratory – i.e., a set of aligned strings with the associated accuracy
score – to a single-string representation, where each letter in the
string corresponds to the letter in the sequenced genome at the same
offset. GenoDroid can support most common formats currently used
by sequencing labs, i.e., SAM, BAM, FastQ, and FastA. However, in
our experiments, we use BAM-formatted files downloaded from the
publicly available DNA database [2]. This BAM format provides
access to individual fragment reads, their alignment and accuracy
scores, as reported by the sequencing equipment. For this particular
format, our implementation uses the popular BamTools library [25]
to access raw (binary) data.

Test-dependent genome pre-processing. As discussed in the rest
of the paper, computational genomic tests often require an offline
phase whereby the entire genome is scanned/processed to emulate
in-vitro techniques. This is often needed to reduce the size of the
input to the secure computation protocol that performs the test.
GenoDroid includes a number of common DNA operations, e.g.,
digestion, probing, and sampling.

Cryptographic pre-processing. As mentioned earlier, privacy-
preserving genomic tests in GenoDroid are based on two-party
cryptographic protocols that yield nothing beyond intended test re-
sults. In many occasions, such protocols entail certain operations
that can be pre-computed once offline. Offline costs can then be
amortized over numerous (online) protocol runs. Such operations
include key generation as well as protocol-specific pre-processing.
In some cases, input to cryptographic pre-processing operations
may depend on output of genome pre-processing (described above).
Cryptographic building blocks included in GenoDroid are discussed
in Section 2.3.

Each pre-processing component is assumed to be executed on a
desktop or a laptop computer. (All information used in this phase
must be securely erased immediately thereafter. Secure erasing is
a well studied problem [36], and is out of the scope of this paper.)
We utilize all available computing cores and facilitate single-pass
genome processing, i.e., whenever possible, operations are executed
concurrently, so that information is read from disk only once. We
also minimize memory usage, especially during pre-processing, and
do not assume that, at any time, the entire genome is stored in RAM.

3.2.2 Smartphone Components
Once the pre-processing phase is completed, results are trans-

ferred to an Android smartphone. All smartphone-resident Geno-
Droid code is written in Java and executed in the Dalvik virtual
machine [35], a fast mobile-friendly JVM implementation that sup-
ports Just-in-Time compiling. As of mid-2012, high-end Android
smartphones typically comes equipped with 1GB RAM and a dual-
or quad-core ARM A9 processor running at 1.2-1.7GHz.

Secure Computation. GenoDroid implements several two-party
cryptographic protocols, optimized for the Android platform: PSI-
CA, SHD, and APSI. These protocol functionalities were introduced
in Section 2.3, whereas, specific implemented instantiations are
given in Section 6 (APSI) and in the Appendix (PSI-CA and SHD).
They represent the main building blocks for the genomic tests pre-
sented in this paper. However, additional protocols can be easily
integrated; in fact, GenoDroid already includes Private Set Intersec-
tion (PSI) from [28].

As mentioned above, we aim to minimize online (smartphone-
bound), and maximize offline (desktop-bound), computation in all
cryptographic protocols. However, in some cases, this can hinder
protocol unlinkability. For example, in the SHD protocol from Sec-
tion 2.3 we could minimize client’s online work by pre-computing



all public key encryptions. However, server would then learn
whether client input changes over multiple interactions. One possi-
ble remedy is to perform pre-computation for multiple interactions.
This would put a strain on the smartphone’s storage. However, some
operations can be pre-computed, periodically, on the smartphone
too, e.g., when it is idle and connected to an external power source.
On the other hand, the argument for unlinkability is, in general, not
particularly convincing in the context of personalized genomic tests
since one’s DNA stays (almost) the same throughout one’s life and,
even in a social setting, one is not likely to conduct, say, a paternity
test with a random stranger.

Communication. GenoDroid supports multiple wireless communi-
cation technologies, selectable based on specific test requirements.
It currently supports secure and authenticated communication over
Bluetooth, Wi-Fi and cellular networks; this includes device dis-
covery and secure device pairing. Depending on the underlying
communication technology, we use different device pairing tech-
niques. We use Bluetooth v2.1 (or higher), which offers Secure
Simple Pairing (SSP) [1] that allows two parties to bootstrap a pub-
lic key authenticated channel. Over Wi-Fi, we perform both local
(broadcast-based) and server-aided discovery. When using the cel-
lular network, we also use server-aided discovery. This allows two
parties, in two broadcast domains, to find a common rendezvous
point. To do so, we implement a publicly available server, to which
devices can advertise their presence using a human-readable ID and
the fingerprint of their public key. As an alternative, the parties
could identify themselves using X.509 certificates or anonymous
credentials [15]: afterwards, the server reveals the counterpart’s IP
address and both parties can communicate directly. (If one or both
parties are behind a NAT box, they would have to use the server to
tunnel data.) Finally, remark that all tests presented in this paper
will be instantiated over Bluetooth.

Additional Components. GenoDroid also includes auxiliary com-
ponents that implement storage management and user interface
design. Since their development prompts no research issues, we do
not discuss them in detail.

4. PATERNITY TESTING
We use the paternity test as one of the “measuring sticks” for

assessing viability of privacy-preserving genetic computations. This
might not seem like a natural choice: a paternity test is not a trifle
but a highly personal matter, i.e., not something we could imagine
doing in a social environment. It is also usually not performed upon
a routine visit to a doctor’s office. Current applications of this test
are generally found in legal or law enforcement settings. However,
since it is arguably the most common genetic test today, we use it
as a gateway to other types of tests. Coincidentally, as discussed
below, it also happens to be the least expensive. Thus, if the targeted
smartphone platform cannot handle a privacy-preserving paternity
test, it would also not be able to support more complicated test types.

A genetic paternity test determines whether two individuals have
a father-child relationship. In this section, we use paternity test
to denote a protocol involving two parties (Alice and Bob) using
their respective genomes as input such that they learn the binary
outcome. A privacy-preserving version of the paternity test involves
disclosing minimum amount of genomic information.

Experts claim that one individual is the father of another if the
Hamming distance between their genomes is below a well-defined
threshold. Thus, the two individuals could run an SHD protocol to
obtain a privacy-preserving paternity test. However, this would be
relatively inefficient: even without privacy, computing the Hamming
distance between two whole genomes would generate traffic in the

order of 1GB and require the comparison of about 3 billion elements.
Such a protocol would be prohibitively expensive on smartphones.
Alternatively, since about 99.5% of the human genome is the same,
the two parties could, in theory, compare only the remaining 0.5%.
Unfortunately, there is not enough current understanding of the
genome structure to pinpoint exactly where this 0.5% occurs.

Our solution reduces the size of the problem by drawing from
optimizations used in in-vitro tests. Specifically, we simulate court-
admissible in-vitro RFLP-based paternity tests introduced in Sec-
tion 2.1. DNA is digested using a set of restriction enzymes and a
small number of fragments, typically between 19 and 25, is selected
using probes, defined by well-known markers [30]. If two individ-
uals are indeed father and child, then, with very high probability,
the length of these fragments matches for at least a given number
of fragments. This method is very reliable: with 25 fragments, its
accuracy is estimated to be about 99.999% [30, 47].

There are several advantages in performing genetic paternity test
computationally, rather than in vitro. From the privacy prospective,
participants do not need to disclose to a testing lab their identity or
their entire genome, nor do they have to deliver swabs to a third-
party facility and wait for the outcome. Instead, they can learn the
test outcome immediately. Furthermore, as recently shown in [6],
RFLP paternity testing can be simulated in computation and a corre-
sponding privacy-preserving construction can be obtained if frag-
ment lengths are compared privately, using Private Set Intersection
Cardinality (PSI-CA), defined in Section 2.3.

4.1 An Optimized Implementation
We now present GenoDroid implementation of privacy-preserving

paternity test. It includes two versions: the first, similar to [6],
uses PSI-CA as the underlying cryptographic building block, and
the second – SHD. Our implementation supports Bluetooth as the
communication channel between interacting parties, to demonstrate
feasibility of our approach to location-aware, bandwidth-constrained
and easy-to-bootstrap settings. However, GenoDroid seamlessly lets
us choose Wi-Fi or cellular networks.

While designing this application, our main objective is to reduce
online computational overhead – crucial to guarantee a positive
user experience – through protocol optimization and maximal pre-
processing.

Pre-processing. We emulate RFLP-based enzyme digestion and
marker-based fragment selection, in a single pass. We design an
algorithm that compares a genome to all markers in parallel. (Ac-
cording to genomics experts, each marker appears at most once in
the entire genome, thus, as soon as a match is found, the correspond-
ing marker is removed from the set of available ones.) As a result, a
set of n (in practice, 25) elements (mi, `i) is produced, where mi

is the i-th marker and `i is the length of the corresponding fragment.
This set constitutes the input to PSI-CA/SHD protocol run on the
smartphones (see below).

Furthermore, pre-processing also performs offline operations re-
lated to PSI-CA or SHD protocols. However, as discussed in Sec-
tion 3.2.1, if different runs of the test must be unlinkable, we can
either: (i) perform pre-computation multiple times and transfer the
corresponding output to the smartphone, or (ii) let the smartphone
periodically perform pre-computation when idle and connected to a
power source.

Smartphone Interaction. Using RFLP-based techniques, we re-
duce privacy-preserving paternity testing to privately comparing
how many of the n fragments have the same length across the
two individuals. That is, after independently applying the diges-
tion/probing algorithm, parties learn how many fragments have the



same length, and nothing else. Even if the test result is negative,
this does not reveal any sensitive information. Hence, security of
this construction only depends on that of the cryptographic protocol
used for private comparison.

Furthermore, since input to this protocol is very small (only 25
“lengths”) it can be executed efficiently. Nonetheless, we develop an
optimized implementation of both PSI-CA and SHD using pipelined
communication, i.e., both parties start transmitting processed data as
soon as it is available, without waiting for the entire computation to
finish. While one could choose any PSI-CA/SHD instantiation, our
implementation (and experimental evaluation) employs the protocol
from [26] (for PSI-CA) and the one based on additively homomor-
phic encryption (for SHD). They are both presented in the Appendix.

4.2 Performance Evaluation
We now evaluate GenoDroid’s implementation of privacy-

preserving paternity test. Let client denote the party that success-
fully completes Bluetooth discovery and initiates the connection,
and server – the other entity. This also corresponds to the client-
server nomenclature in PSI-CA and SHD protocols that we use.
Recall that only client obtains the test result from the interaction,
however, in our implementation, it communicates it to server over
the secure channel. (This assumption does not violate our security
model, since we assume that both parties are semi-honest.)

Genomes used in our experiments are downloaded from the 1,000
Genomes Project [2], and pre-processed with enzymes from [60].

Our measurements, presented in Table 1, are performed on two
Nexus Galaxy phones, running Android 4.0, with a 1.2GHz TI
OMAP 4460 ARM Cortex-A9 dual-core CPU, and communicating
over an encrypted Bluetooth channel (as discussed in Section 3.2.2).
In our experiments, we used 25 markers (corresponding to 99.999%
accuracy) and tested both PSI-CA and SHD variants. Specifically,
we measured:

1. Offline Time – time for both server and client to perform pre-
computation pertaining to PSI-CA/SHD, on the smartphone.
(Only if unlinkability is desired.)

2. Online Time – interval between the time client starts commu-
nicating with server and parties outputting the final result.

Also, we compare our optimized PSI-CA implementation with its
non-optimized counterpart (without pre-processing and pipelining).
Run-times are averaged over 1,000 trials to minimize measurement
variations. Bandwidth measurements include all information trans-
mitted by both client and server.

Offline Online
Server Client Time Bandwidth

Optimized PSI-CA 399 ms 383 ms 244 ms 14.1 KB
Optimized SHD 736 ms 507 ms 376 ms 31.5 KB
PSI-CA no pipelining – – 784 ms 14.1 KBno pre-computation

Table 1: Computation & Communication costs of GenoDroid paternity test.
Online cost reflect wall-clock-based run-times.

Our tests show that the optimized PSI-CA [26] yields the best
results. Additively homomorphic encryption-based SHD (see the
Appendix) is about 1.5 times slower than PSI-CA in the online
phase. Our tests also show that pipelining and pre-computation
significantly enhance user experience, since they allow the online
protocol run-time to be over 3 times faster.

From the security point of view, the two instantiations – while
both secure under the Decisional Diffie-Hellman (DDH) assumption
– rely on different models: the SHD construct is secure in the stan-
dard model, whereas, selected PSI-CA is instantiated in the Random
Oracle Model (ROM).

5. GENETIC ANCESTRY TESTING
Genetic ancestry testing allows individuals to trace their lineage

through the analysis of their genomic information. Increasing un-
derstanding and availability of fully sequenced genomes makes
commensurably more effective to study how susceptibility to com-
mon diseases varies among individuals and populations [61]. Also,
Genome-Wide Association Studies (GWAS) [14] are gaining mo-
mentum as they study common genetic variants in different indi-
viduals to see if any variant is associated with, e.g., a disease, and
possibly correlate such disease to a given ancestry line.

Besides health-related application, ancestry testing is becoming
more and more popular for personal and social purposes. For in-
stance, an increasing number of people is interested in tracing biolog-
ical relatives and researching genealogical records, and discovering
their family histories. Others are searching for connections to ethnic
groups or geographical locations. The business side of recreational
genetics is growing very fast, with scores of companies already
offering ancestry tests costing only a few hundred dollars [9].

Today’s genetic ancestry tests analyze either: (1) mitochondrial
DNA (mtDNA), based on sequencing of maternally-inherited DNA
material, or (2) the Y-chromosome, based on genomic information
transmitted from father to son [9]. In both cases, individual’s ge-
nomic information is compared with that of a sample individual.3

Several commercial entities (e.g., 23andMe [3]) maintain a collec-
tion of sample genomes from individuals belonging to different
ethnic groups, and compare them against their customers’ genomic
information to understand how they relate to known ethnic groups.

Alternatively, ancestry testing can be performed on two individ-
uals in order to determine their genetic relationship. In this case,
individuals learn whether or not they are “related” or even their
distance in their common genealogical tree. Additionally, since the
Y-chromosome is passed essentially unchanged from father to son,
tests based on such portion of DNA provide precise information
about paternal lineage. Similarly, mtDNA-based tests offer insight
into one’s maternal lineage.

The availability of full genome sequencing will soon allow per-
forming more efficient computational analogs of tests that are now
conducted exclusively in labs. However, privacy issues must be
taken into account by both users and testing companies. Users
might be unwilling to surrender their entire genomes, while com-
panies might not wish to disclose their test details (which could
represent proprietary information or trade secrets). Also, as in the
case of paternity, computational genetic ancestry testing does not
require parties to ship biological samples to a lab, thus, test results
may be obtained significantly faster and without exposure of genetic
material to third parties. Nonetheless, even without an external lab,
ancestry testing between two individuals may pose privacy concerns,
whenever parties may not be willing to mutually disclose their an-
cestry or their complete genomic information. To this end, we need
a privacy-preserving protocol that allows two parties to determine
the extent of their genetic proximity without revealing any additional
information about their respective genomes.

A simple way to realize a privacy-preserving ancestry test is to
allow two parties to compare their entire genomes in an oblivious
manner. This way, they can learn their genetic proximity without
leaking additional information. However, since genomes include
around three billion letters, such computation would be rather ineffi-
cient, both in computation and communication overhead. Therefore,
currently popular tests restrict the comparison to either mtDNA or

3For improved efficiency, rather than comparing the whole mtDNA or Y-
chromosome, labs usually compare only a few (e.g., 50) SNPs across the
entire genome or focus on a subset of insertions.



Y-chromosome, obtaining a slightly less accurate, yet still mean-
ingful, metric. Nonetheless, the size of the input to the privacy-
preserving computation would still be relatively large. Specifically,
there are about 16,000 nucleotides in mtDNA and 58 million in the
Y-chromosome. This is unlikely to yield an efficient implementation
on a smartphone. A better approach combines the use of mtDNA/Y-
chromosome information with either the knowledge of a subset of
SNPs suitable for the test (as currently performed by commercial
labs) or, if this information is unavailable, selecting a random subset
as described next.

5.1 Our Construction
Preliminaries. This section presents a protocol for secure genetic
ancestry testing based on Jaccard similarity index [42]. This mea-
sures the similarity of setsA andB, as J(A,B)= |A∩B|/|A∪B|.
High values of the index suggest that two sets are very similar,
whereas, low values indicate that A and B are almost disjoint.

To realize privacy-preserving computation of J(A,B), we only
need secure computation of |A∩B|, since J(A,B)= |A∩B|/(|A|+
|B|−|A∩B|), and this can be done using PSI-CA (see Section 2.3).

However, when two parties compute the Jaccard index, with or
without privacy, they incur computation and communication com-
plexity (at least) linear in the size of their sets. Thus, if performed
over a whole genome, this computation might be relatively expen-
sive. In fact, for any new comparison, the Jaccard index must
be computed from scratch – i.e., no information used to calculate
J(A,B) can be re-used for J(A,C). As a result, an approxima-
tion of the Jaccard index is often preferred, as it can be obtained
at a significantly lower cost, e.g., using so-called MinHash tech-
niques [10]. Informally, MinHash techniques extract a small repre-
sentation hk(S) of a set S through deterministic (salted) sampling.
This representation has a constant size O(k), i.e., independent from
|S|, and can be used to compute an approximation of the Jaccard
index, again as the ratio between the intersection and the union of
the samples. The parameter k also defines the expected error with
respect to the exact Jaccard index – it is bounded byO(1/

√
k) [10].

Observe that, while the computation of hk(S) also incurs commu-
nication and computation complexity linear in set sizes, it must be
performed only once per set, for any number of comparisons. Thus,
with MinHash techniques, evaluating the similarity of any two sets
requires only a constant number of comparisons. Further, we can
privately approximate the Jaccard index of two sets by executing
PSI-CA on input MinHash samples (and not the entire sets).

Ancestry Testing. Using MinHash, we implement an efficient
privacy-preserving genetic ancestry testing protocol that can be
executed on smartphones. Our protocol leverages a pre-processing
phase performed on a desktop or laptop computer. The pre-processing
phase in our construction takes as input the set representation of
an individual’s mtDNA or Y-chromosome. It extracts a compact
representation, using MinHash, and also performs the offline compu-
tation phase for the PSI-CA protocol of [26]. Finally, the two parties
perform the (PSI-CA) online computation on their smartphones and
obtain the test result, i.e., estimate how similar their genomes are,
based on one of the following datasets: (1) a small selection of
SNPs; (2) an entire Y-chromosome; (3) the whole mtDNA material;
(4) all known SNPs (approximately 3 million).

5.2 Implementation Details
Our implementation realizes privacy-preserving genetic ancestry

testing by privately (and probabilistically) comparing how many
common SNPs, mtDNA or Y-chromosome base pairs two individu-
als share, using MinHash and PSI-CA from [26] (in the Appendix).

Pre-processing. Depending on whether the test is performed using
SNPs, mtDNA or Y-chromosome, the offline phase of our protocol
– performed on a desktop computer – involves slightly different
computation. SNP-based testing requires iterating over the en-
tire genome (about three billion base pairs) to extract all known
SNPs. The output of this phase is composed of around 3 million
elements, which we represent as (bi||loci) where bi corresponds
to the i-th SNP and loci to its position in the genome. The set
{(b1||loc1), . . . , (bn||locn)} is then used as input for the offline
phase of the PSI-CA protocol in [26].

The pre-processing phase of both mtDNA- and Y-chromosome
based tests consists in the offline phase of selected PSI-CA instanti-
ation, executed on input the whole mtDNA (16,000 base pairs) or
the Y-chromosome (58 million nucleotides), represented as in the
SNP-based test.

Smartphone Interaction. Regardless of the dataset used for the
test, the online computation involves the comparison of a subset of
the parties’ input, extracted using MinHash. Once they establish a
connection, two parties negotiate a common salt, which is used by
MinHash to extract k elements from their respective input. These k
elements are then used as the input to the PSI-CA protocol.

5.3 Performance Evaluation
We evaluate GenoDroid’s implementation of privacy-preserving

ancestry test using the same setup as in Section 4.2. We measure
the offline overhead as the time required to perform the PSI-CA
pre-computation. Online cost is measured as the online part of
PSI-CA. We also include time, bandwidth and pre-computation
storage requirements of the protocol executed without the use of
MinHash on the entire genome, mtDNA, Y-chromosome and all
SNPs. We also perform our measurements on input 50 randomly-
selected SNPs, to simulate the test performed by 23andMe (note
that the actual SNPs used by 23andMe are not publicly known).

Measurements are presented in Table 2. We instantiate Min-
Hash with k=10,000, leading to an error of about 1% in the final
result. Run times are averaged over 1,000 trials to minimize mea-
surement variations.4 Pre-computation storage requirements for
MinHash are identical to that of performing the same test without
MinHash – i.e., 8.5 MB for mtDNA, 366 MB for SNPs and 6.9 GB
for Y-chromosome tests. Bandwidth measurements include all infor-
mation transmitted by both parties. Similar to paternity test, client
denotes the party that successfully completes Bluetooth discovery
and initiates the connection, and server – the other entity, and this
also corresponds to client and server nomenclature in PSI-CA [26].

Offline Online
Pre-comp. Size Server Client Time Bandwidth

Full Genome 358 GB 494 days 494 days 273 days 1544 GB
Y-chromosome 6.9 GB 9.5 days 9.5 days 5.3 days 29.9 GB
All SNPs 366 MB 11.9 hours 11.9 hours 6.6 hours 1.5 GB
mtDNA 8.5 MB 227.7 s 227.0 s 125.3 s 8.5 MB
MinHash (all tests) – – – 220.6 s 5.2 MB
MinHash w/ depends on test 142.3 s 141.9 s 78.3 s 5.2 MBpre-comp. (all tests)
50 SNPs (23andMe) 6.25KB 713 ms 711 ms 394 ms 27 KB

Table 2: Computation & Communication Costs of our Privacy-Preserving
Ancestry Test.

Our experiments show that, without using MinHash, only mtDNA-
based tests can be executed on smartphones in a reasonable amount
of time and with acceptable communication overhead. Due to our
choice of k, the use of MinHash improves the performance of all pro-

4For tests longer than one day, running times have only been estimated by
running tests on smaller inputs – this was possible as tested protocols incur
linear complexities.



tocols. Specifically, it takes, 78 seconds with (and 220 seconds with-
out) pre-computation, to execute privacy-preserving genetic ancestry
testing between two parties equipped with Android smartphones,
with all datasets. (In fact, k is a constant, thus, it is independent of
size of the original sampled set).

The amount of space required to store precomputed values prompts
an interesting tradeoff. While it is easy to justify the use of 8.5 MB
of memory for storing the elements precomputed from mtDNA ge-
netic material, users may prefer not to store 366 MB or 6.9 GB of
data (in the case of SNPs and Y-chromosome respectively) and rather
perform the whole PSI-CA protocol online, incurring an additional
two minutes of computation.

It is interesting to observe that our simulation of the 23andMe
tests shows that, with the appropriate knowledge, genetic ancestry
testing can be performed in near real time on current smartphones.

6. PERSONALIZED MEDICINE
Recall that PM aims at identifying genomic information needed

to accurately predict: (1) a susceptibility to a given disease, (2) the
course of a disease, and (3) response to treatment. For example,
before treating leukemia and other autoimmune diseases, physicians
are required, by the US Food and Drug Administration (FDA), to
test patients for certain mutations of the tpmt gene. This particular
gene codes the enzyme responsible for metabolization of a number
of drugs. Thus, sensitivity and toxicity response to these drugs
varies according to tmpt mutations. In general, PM entails testing
for numerous genetic markers, ranging from one to a few hundred
mutations.

With growing availability and better understanding of genomic
information, future health-care will be tailored to the patient’s DNA
and genetic PM tests are soon likely to become commonplace. This
prompts some concerns about the entities (e.g., hospitals, doctors,
insurance carriers and labs) that could obtain genomic information
to perform such tests. Besides obvious privacy issues due to bulk
access to patients’ genomes, there is a more subtle problem involving
liability and long-term safety of genomic data. We alluded to it
earlier, in Section 3.1. Entities handling genomic data need to
demonstrate that it was treated appropriately and disposed of when
no longer needed. Storing genomic information, even for a short
time, creates potentially attractive targets for breaches and attacks.

One intuitive approach is to let the patient independently run
specialized software over her genome and check for a match (or
lack thereof) against a given drug’s fingerprint. However, pharma-
ceuticals usually consider DNA fingerprints of their drugs to be
trade secrets and thus are not expected to reveal them. At the same
time, for every new drug, pharmaceuticals are required to obtain
approval from some government agency, e.g., the Food and Drug
Administration (FDA) in the United States. Therefore, an ideal
scenario would be a privacy-preserving PM test, whereby: (1) the
patient learns the outcome but not the drug’s DNA markers, (2) the
patient is somehow assured that the drug has been authorized by the
relevant government agency, and (3) neither the pharmaceutical nor
any other party learns any information about the patient’s genome.

The rest of this section presents a technique for privacy-preserving
PM testing, implemented in GenoDroid. Similar to other GenoDroid
tests, it runs in real-time and involves a patient with an Android
smartphone and a tester, e.g., a medical lab or a physician’s office.
We begin by discussing a strawman construction that, albeit privacy-
preserving, is not suitable for a smartphone platform and proceed to
illustrate our practical cloud-aided approach.

6.1 Initial Construction
Similar to [6], our initial approach to privacy-preserving PM test-

ing relies on APSI, defined in Section 2.3. We use the particular
construction from [27] where the patient plays the role of server, the
tester – client, and the FDA – mutually trusted CA. The APSI proto-
col from [27] is secure in the malicious model. However, we argue
that malicious player security may be not needed for the PM setting
that usually takes place in a medical lab or a physician’s office. This
is because there is generally some basic trust between a patient and
a doctor (or a lab performing the test). Also, computational tests
can be audited, e.g., if protocol transcripts are mandated to be kept.
Furthermore, there could be severe consequences for malicious be-
havior, e.g., loss of medical license. Thus, we slightly modify the
construction from [27] to only achieve semi-honest security.

Specifically, protocol executes on common input CA’s RSA pub-
lic key (N, e), a generator g of QRN , and two cryptographic hash
functions H,H ′, modeled as random oracles. (All computation
is performed mod N ). For each element ci ∈ C = {c1, . . . , cv}
in its input, client obtains σi such that σie = H(ci), i.e., a CA-
issued signature warranting authorization. The interaction starts with
client sending {ai = σi · gRc:i}vi=1 (for Rc:i ← ZN/2) to server.
Then, server selects Rs ← ZN/2 and returns (Z = g2eRs , {a′i =
ai

2eRs}vi=1). Also, for each element sj ∈ S = {s1, . . . , sw} in
its input, server sends client {tsj = H ′(H(sj)

2Rs)}wj=1. Finally,
client computes {tci = H ′(a′i · Z−Rc:i)}vi=1 and outputs intersec-
tion S ∩ C = {ci ∈ C | tci ∈ {tsj}wj=1}.

APSI-based privacy-preserving PM testing is as follows. The
patient uses her smartphone that stores pre-processed genomic in-
formation as well as various cryptographic material. We assume
that, well ahead of running the protocol and after positive clinical
trials, the FDA granted authorization (auth) to the pharmaceutical
for a specific DNA fingerprint (fp), corresponding to a genomic
test. We denote fp = {(b∗j ||j)}, where each symbol b∗j is ex-
pected to occur at position j of a fully sequenced genome, and
auth={H(b∗j ||j)d mod N}, where N and d are FDA’s RSA mod-
ulus and private key, respectively. The patient’s private input is her
entire genome. (This is unavoidable since the test fingerprint can
occur anywhere.) The tester’s input is (fp, auth), as defined above.

Tester and patient engage in APSI protocol, as described above,
and, at the end of the protocol, the tester learns whether the patient’s
genome matches fp, provided that auth is a valid authorization of
fp. Furthermore, the tester learns nothing further about the patient’s
genome, and (2) the patient learns nothing about fp or auth.

We note that server-side (patient’s) computation can be parti-
tioned into offline and online phases. Specifically, {tsj}wj=1 can be
pre-computed once for any number of tests. Therefore, while offline
computation is linear in the size of the genome, its online coun-
terpart is linear in the number of tested loci. However, {tsj}wj=1

values must still be transferred, implying that online communication
complexity is linear in the genome size. This translates into several
gigabytes and obviously hinders adoption on modern smartphones.

6.2 Cloud-Aided Variant
We now show how to modify the initial approach to make it

amenable for smartphones. The main idea is to off-load some of
the patient’s (server’s) computation to the cloud. However, we
immediately acknowledge that involving the cloud triggers the risks
discussed at the end of Section 3.1.

The patient needs to pre-process the genome and upload the result
to a (semi-honest) cloud provider. Clearly, such pre-processing must
include some form of encryption, to conceal the genome from the
cloud. Moreover, the encrypted elements must be shuffled in order
to (partially) hide access patterns from the cloud. When the test is
conducted, the patient explicitly grants the tester (client) access to
cloud-resident genomic information, such that only the test result



is learned. This operation must be efficient and should prevent
the tester from colluding with the cloud provider and learning any
additional genomic information.

Unlike paternity and ancestry testing, the pre-processing phase
in this cloud-aided variant results in two output sets: one uploaded
to the patient’s smartphone, and the other – to the cloud provider.
Despite the presence of the cloud provider, the actual protocol is
still based on APSI from [27].

Pre-processing. Besides genomic pre-processing (e.g., format
transformation), patient pre-computes, e.g., on a desktop, {tsj =
H ′(H(b∗j ||j)2Rs)}wj=1 and uploads the result, after shuffling, to
the cloud. This does not reveal any information about the genome.
Then, public cryptographic parameters (N, e, g,H,H ′), along with
private random value (Rs), are uploaded to the patient’s smartphone.
(Note that there is no pre-computation on the tester side.)

Interaction. This phase transpires between a smartphone-equipped
patient and a tester on a desktop or a laptop connected to the Internet.
Together, they execute the online phase of APSI, i.e., the tester sends
the patient {ai}vi=1 and receives {a′i}vi=1. The tester then computes
{tci}vi=1 and finds matching tsj-s using the cloud provider. There
are at least three ways for tester to do so:

1. Query the cloud using {tci}vi=1.

2. Download all {tsj}wj=1 from the cloud.

3. Privately query the cloud using Private Information Retrieval
(PIR) [22].

GenoDroid currently implements (1) since it is the most efficient
of the three. Of course, since the tester is running on a regular
computer, we could choose option (2). However, even on a desktop
with a wired Internet connection, downloading approximately 60GB
of data is time-consuming for the tester and unscalable for the cloud
provider.5 As far as option (3), recent advances in, and optimization
of, single-server PIR techniques have yielded promising results
that might be efficient enough for the tester’s desktop or laptop,
especially if queried database is maintained in a cloud cluster [8].
However, since our emphasis in this paper is on the smartphone
platform, rather than on cloud, we leave this item for future work.

Threat Model and Security. We assume that each participant is
semi-honest, i.e., interacts with the other two participants while
following all protocol specifications. However, a participant might
attempt to surreptitiously learn further information about others’
inputs. The underlying APSI protocols, as mentioned earlier is
secure in the semi-honest model, with two parties. In the presence
of the cloud provider (the 3rd party), collusions should be considered.
If a tester colludes with a cloud provider, the only danger is that the
former might obtain the entire “encrypted” genome – i.e., does not
learn any meaningful information. Whereas, if a patient colludes
with a cloud provider, they could learn some information about the
proprietary (to the pharmaceutical) DNA fingerprint fp. In particular,
the colluding parties could learn which (letters, positions) of the
patient’s DNA are specified in fp. However, this can occur only for
the portion of the fingerprint matching the patient’s genome. The
case of a tester colluding with a patient might seem uninteresting;
however, even though a tester acts on behalf of a pharmaceutical,
their collusion can result in leakage of portions of fp, similar to the
previous case.

In summary, we envision multiple entities (including generic
cloud providers, HMO-s and insurance companies) will offer ge-

5GenoDroid assumes 20-byte H′(), thus, since the genome contains approx.
w=3·109 nucleotides, {tsj}wi=1 values amount to (20·3·109)B=60GB.

nomic cloud services to the public. Our foray into privacy-preserving
personalized medicine testing is just one example of what can be
achieved by combining the power of cloud computing/storage with
smartphones in genomic computation and calls for further research.

6.3 Performance Evaluation
We now evaluate GenoDroid’s implementation of privacy pre-

serving PM testing. To compare with previous work, we use the
same genetic fingerprints as in [6], i.e., the ones describing muta-
tions hla-B*5701 and tpmt. The former is associated with extreme
sensitivity to abacavir, an HIV drug, and its fingerprint is composed
of 2 nucleotide positions; the latter is tested before prescribing 6-
mercaptopurine to leukemia patients. The tpmt fingerprint contains
6 nucleotide positions.

Measurements presented in Table 3 were obtained using the same
setup as in Section 4.2, i.e., we used two Android smartphones
communicating over Bluetooth. As discussed in Section 6.2, the
tester can use a desktop computer and parties could communicate
over Wi-Fi. However, we use Bluetooth for consistency’s sake and
in order to provide conservative results: our measurements represent
an upper bound for the cost in a real-world setting.

Patient and tester interact via an APSI protocol where the patient
acts as server, and the tester – client. Client does not perform any
precomputation, and we assume that server uploads its encrypted
genome to the cloud ahead of time. Measurements reported in Ta-
ble 3 reflect the online phase of the APSI protocol. The Cloud does
not perform any cryptographic operation, and therefore, we do not
consider any of its computation costs. Bandwidth is measured for
tester’s interaction with patient and with cloud separately (band-
width measurements are independent of the transmission medium).

Online Bandwidth
Patient Tester Tester-Cloud Tester-Patient

hla-b*5701 78 ms 141 ms 0.40 KB 0.40 KB
tpmt 187 ms 301 ms 1.77 KB 1.77 KB

Table 3: Computation & Communication costs of GenoDroid’s cloud aided
hla-b and tpmt tests. Online cost reports wall-clock running time.

Our experiments show that both tests for tpmt and hla-b can be
executed on smartphones in well under a second. Our implementa-
tion compares favorably with that of [6] in terms of both bandwidth
– due to the use of cloud-aided computation – and offline compu-
tation. Although our online phase runs slower than experiments
reported in [6], we emphasize that (1) our timing include not only
the cryptographic blocks, but rather a whole implementation over
networked devices; (2) the Android smartphones used in our tests
are significantly slower than the desktop platform used in [6].

7. USABILITY STUDY
One of the goals of the GenoDroid framework is to guarantee

portability and accessibility, to average non-tech-savvy users, of
privacy-preserving genomic tests. Thus, usability is one of the key
factors influencing its acceptance. To this end, we conducted a
usability study to obtain feedback on our prototype applications
as well as to assess the sensitivity of subjects to privacy concerns
related to their genomic information.6

The study was conducted on 16 subjects (8 male and 8 female),
sampling a diversified population of students, researchers, and non-
scientific personnel. 90% of subjects belong to the 25-to-40 age
range. Applications were run over mock human genomes, with
same length and comparable nucleotide distribution as real human

6Our study received the “Exempt Registration” status from UC Irvine’s
Institutional Review Board (IRB).



genomes. Our test mock-up was implemented using two Android-
equipped Samsung Galaxy Nexus phones and used Bluetooth as the
wireless communication medium.

As discussed in Section 4, we use paternity test as one of the
“measuring sticks” for assessing viability and usability of privacy-
preserving genetic computations. Arguably, paternity test is the
most common genetic test today and non-tech-savvy users would
likely relate to it more than to any other test. (The actual app will be
released with the final version of the paper.) The chain of events is
as follows: since the pre-computing phase takes place on desktops,
the app is pre-loaded with the result of the RFLP-driven digestion
and probing. Once the app is launched, the user is prompted with
the Android interface to carry out secure Bluetooth pairing with
another device and establish an authenticated and encrypted channel.
Upon successful connection establishment, both users see a “Start
Test” button; the first user to click is prompted with a “Waiting for
other party” message, and, after the counterpart also hits start, the
test is initiated. Finally, users are displayed with the test result, i.e.,

“Tested individuals are/are not father and child”. (In our user studies,
the result is negative.)

After the test, subjects were asked to fill out a questionnaire
corresponding to Brooke’s well-known 10-item System Usability
Scale (SUS) [11], where answers indicate the degree of agreement
or disagreement with the corresponding statement on a 5-point
scale. Subjects rated application’s usability, on average, at 82/100
on the SUS scale. Such a high score can be safely considered
above industry average and confirms that the perceived usability
of the software is high enough to be deployed in practice. This is
not surprising since the application is straightforward to use, does
not require any high-end technical skill, and test running time is
extremely low (in fact, a delay of 250ms is barely noticeable by
users, and provides a seamless experience [57]).

We also asked subjects to answer a few questions about privacy
concerns related to genomic information. Subjects were asked
to indicate their agreement on a statement using a 5-point scale,
where 1 corresponds to “strongly disagree” and 5 – to “strongly
agree”. Due to space limitation, we defer complete discussion of
this part to the full version of the paper. However, we report a
few interesting findings. Subjects were “concerned with potential
privacy exposure of (their) genomic information” (average 4.21/5
agreement). Somewhat more surprising is that our test subjects were
“concerned with privacy even if tests are beneficial to (their) health”
(average 3.08 agreement), while they were “in favor of genetic tests
if they do not invade (their) privacy” (4.81 average agreement). Note
that subjects in our study are not privacy/security researchers.

8. RELATED WORK
Secure Testing on Fully Sequenced Human Genomes. Non-
cryptographic approaches to privacy, such as de-identification, are
often ineffective on genomic data, as shown by some recent stud-
ies [38, 49, 72, 76]. As a result, several privacy-preserving crypto-
graphic techniques have been proposed. We now review techniques
for secure testing on fully sequenced human genomes.

Baldi, et al. [6] recently introduced several cryptographic proto-
cols for privacy-preserving testing of fully sequenced human ge-
nomes, including RFLP-based paternity test and genetic screening
for personalized medicine or recessive genetic diseases. Similar to
our setting, individuals obtain their genomes and allow authorized
parties (e.g., doctors) to run genetic tests such that only test results
are disclosed to one or both parties. However, [6] only addresses
the issue of designing cryptographic protocols, and does not deal
with real-world issues. In particular: genome conversion, extensi-

bility, fine-grained optimizations on mobile devices and usability,
are not considered. Whereas, our work provides a set of working
practical instantiations of genomic tests on a popular smartphone
platform. Also, in contrast with the PM technique in [6], our work
includes a cloud-aided variant that facilitates much more efficient
operation. Finally, we design and implement new operations, such
as privacy-preserving genetic ancestry testing.

Chen, et al. [21] studied the problem of privacy-preserving map-
ping and aligning of human genomic sequences to a reference ge-
nome, by outsourcing work to the cloud and protecting sensitive
DNA information. Since [21] does not consider genomic testing, it
is orthogonal to our work.

Secure Computation on DNA Fragments. We now review prior
work realizing secure computation on DNA fragments, as opposed
to fully sequenced genomes.

Bruekers, et al. [13] presented privacy-preserving techniques for
some DNA operations, based on Short Tandem Repeat (STR). Pro-
posed techniques use homomorphic encryption on DNA fragments
to perform comparisons. Testing protocols are resilient to small
numbers of errors, however, their complexity increases with the
number of tolerated errors [7]. Also, [13] leaves as an open problem
the scenario where an attacker faithfully runs the protocol but with
arbitrary inputs. In this setting, an attacker, given STR’s limited
entropy, can “lie” about its STR profiles and run multiple dependent
protocols, thus reconstructing the other party’s profile.

Wang, et al. [73] developed techniques for computation on ge-
nomic data stored at a data provider, including: edit distance, Smith-
Waterman and search for homologous genes. Program specialization
is used to partition genomic data into “public” (most of the genome)
and “sensitive” (a very small subset of the genome). Sensitive re-
gions are replaced with symbols by data providers (DPs) before data
consumers (DCs) have access to genomic information.

Troncoso-Pastoriza, et al. [71] proposed an error-resilient privacy-
preserving protocol for string searches. One party, on input of its
DNA snippet, can verify the existence of a short template (e.g., a
genetic test held by the service provider) within its (short) snippet.
This technique handles errors and maintains privacy of both the
template and the snippet. Each query is represented as an automaton
executed using a finite state machine (FSM) in an oblivious manner.
However, the number of FSM states is always revealed to all parties.

The work of Katz, et al. [46] also considers DNA testing. Specif-
ically, it realizes secure computation of the CODIS test [70] (run
by the FBI for DNA identity testing), that could not be otherwise
implemented using pattern matching or FSM.

Another set of cryptographic results focus on privately computing
the edit distance for two strings α, β. (Edit distance is defined as the
minimum number of operations, such as, delete, insert, or replace,
needed to transform α into β.) Privacy-preserving computation of
Smith-Waterman scores [67] has also been investigated and used for
sequence alignment. Jha, et al. [43] show how to securely compute
edit distance using garbled circuits [75], and demonstrate that the
resulting overhead is acceptable only for small strings (e.g., a 200-
character strings require 2GB circuits).

Secure Computation on Mobile Devices. In [39], Huang, et al.
present a preliminary analysis of the performance of pipelined gar-
bled circuits on smartphones and deploy optimized circuit-based
techniques for secure computation [40]. [39] mentions personal ge-
netics as a possible application, showing that two individuals could
compare 25 genetic features (e.g., common recessive genetic dis-
eases) in about 7 seconds. Although, in this paper, we do not focus
on this test, we observe that only if all known recessive diseases are
compared, the test becomes truly privacy-preserving. (In fact, an in-



dividual who requests a specific subset of tests may be revealing the
disease he/she suffers). While it may be reasonable today to assume
that the number of known recessive diseases is in the order of 25,
this may soon become unrealistic, as full genome sequencing contin-
uously enables better understanding of the genome and discovery of
new diseases. Also, [39] presents, as an application example, Com-
monContacts, an Android app that privately discovers the contacts
common between two users. It realizes Private Set Intersection [32],
where sets correspond to contact lists. However, computation over-
head appears to be still too high, in practice, to scale up to fully
sequenced genomes, since executing CommonContacts on lists with
256 entries takes about 10 minutes [39].

Carter, et. al [19] presented the concept of Efficient Mobile Obliv-
ious Computation (EMOC), i.e., a technique that completely re-
places garbled circuits with homomorphic operations on ciphertexts.
EMOC is used to solve Yao’s millionaires problem [75] and compute
common friends in a social network. Finally, Mood, et al. [53] have
recently proposed a memory optimization for garbled-circuit based
applications for generic secure computation on mobile phones.

9. CONCLUSIONS AND FUTURE WORK
This paper explored the viability and practicality of privacy-agile

computational genomic tests in the portable and pervasive setting of
modern smartphones. We combined domain knowledge in biology,
genomics, ubiquitous computing, and applied cryptography, to de-
sign and build a personal genomic toolkit, called GenoDroid. We
implemented it on the Android platform, assessed its performance
and conducted pilot usability study that produced some encourag-
ing results. We certainly plan to incorporate support for additional
genetic tests in GenoDroid, e.g., privacy-preserving organ donor-
recipients genetic compatibility testing. We also intend to look
into computational genetic tests for non-human digitized genomes,
e.g., plants as well as pets and livestock. Last but not least, lots of
work remains to be done in terms of user perception (and general
usability) of personal computational genetic tests.
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Appendix: Protocol Instantiations

Private Set Intersection Cardinality (PSI-CA). We implement
the PSI-CA protocol of [26], secure in the semi-honest model under
the DDH assumption in Random Oracle Model (ROM). It executes
on common input two large primes p, q, s.t. q|p − 1, and two
cryptographic hash functions H and H ′. We assume that p, q, H
and H ′ are publicly available and that the same values are used in
all instantiations of a specific genomic application in order to enable
pre-computation. (Computation below is assumed mod p.)

Client picks Rc randomly from Zq and then, for each ci ∈ C=
{c1, . . . , cv}, computes ai =H(ci)

Rc . Then it sends {ai}vi=1 to
server. The latter picks Rs and randomly from Zq and sends client
{a′i=(ai)

Rs}vi=1 after being shuffled. Server also sends, for each
sj ∈ S={s1, . . . , sw}, tsj=H ′(H(sj)

Rs).
Finally, client outputs |S ∩ C| as:

|{ts1, . . . , tsw} ∩ {H ′(a′1
1/Rc), . . . , H ′(a′v

1/Rc)}|.

Secure Hamming distance (SHD). To obtain the SHD of two
equal-length string in the semi-honest model, we can use any ad-
ditively homomorphic encryption scheme, such as, Paillier [58] or
additive ElGamal variant [29].

Client generates keypair (pk, sk) and, given string C=c1|| . . . ||cn,
computes {ai=Epk(−ci)}ni=1. Similarly, server computes {bi=
Epk(si)}ni=1. Client sends {ai}ni=1 to server, which computes
di = bi ∗ai, such that di is the encryption of (si− ci). Next, server
picks n random values, {ri}ni=1, and returns {ei = di

ri}ni=1 to
client, after shuffling them. Finally, client sets zi = 1 if Dsk(ei) =
0, and zi 6= 0 otherwise, and computes HD(S, C) =

∑n
i=1(zi).

Our implementation uses the additive ElGamal encryption scheme,
secure under the Decisional Diffie-Hellman (DDH) assumption in
the standard model. Let p, q (s.t., q|p− 1), and a generator g of a
subgroup of Z∗p of order q, be public parameters. Let x ← Zq be
the private key sk and y = gx mod p the public key pk. (pk is
transferred to server as the first step of the interaction). Encryption
of message m ∈ Zq is Encpk(m) = 〈c1, c2〉 = 〈gr, hr · gm〉 for
r ← Zq . Decryption is Decsk(Encpk(m)) = c2/c1

x = gm, thus,
one can efficiently test whether Encpk(m) is an encryption of 0.
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