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Abstract. Named Data Networking (NDN) is an information-centric
network architecture designed as a candidate replacement for the current
IP-based Internet. It emphasizes efficient content distribution, achieved
via in-network caching and collapsing of closely-spaced content requests.
NDN also offers strong security and explicitly decouples content from
entities that distribute it. NDN is widely assumed to provide better privacy
than IP due to the former’s lack of source and destination addresses.
In this paper, we show that this assumption does not hold in practice.
In particular, we present several algorithms that help locate consumers
within the network by leveraging NDN router-side content caching. We use
simulations to evaluate these algorithms on large and realistic topologies,
and we validate our results on the official NDN testbed. Our techniques can
be used not only to identify consumers, but also to detect eavesdroppers.
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1 Introduction

Despite its impressive longevity, popularity and overall success, the Internet is
starting to suffer from limitations of its original design. Current protocols (e.g.,
IP) were conceived when remote login, email and resource sharing were the most
prominent Internet use cases. However, a significant fraction of today’s Internet
traffic corresponds to content distribution. Because of this paradigm shift in
the nature of Internet traffic, multiple research efforts [5], [19,20], [22], [32], try
to address the shortcomings of the current Internet, with the long-term goal
of replacing it with a next-generation Internet architecture. One such effort is
Named Data Networking (NDN) [15].

NDN is an example of Content-Centric Networking, where content – rather
than a host or an interface – plays the central role in the architecture. NDN is



primarily oriented towards efficient large-scale data distribution. Rather than es-
tablishing direct IP connections with a host serving data packet, NDN consumers
directly request (by issuing interest packets for) pieces of content by name. The
network is charged with finding the closest copy of the requested content that
satisfies the interest, and with retrieving it as efficiently as possible. To this end,
NDN features ubiquitous content caching, i.e., any host/router can store a copy
of the content it receives or forwards, and use it to satisfy subsequent interests.
NDN also provides interest collapsing, i.e., only the first of multiple closely spaced
interests (for the same content) is forwarded by each router. Unlike IP datagrams,
NDN interests and content packets do not carry source or destination addresses.
One of the alleged consequences of this feature is consumer location privacy. In
this paper we show that two fundamental NDN features (ubiquitous caching and
interest collapsing) can be used to violate consumer location privacy. Specifically,
we show how information leaked by caching and interest collapsing can be used
to identify and locate consumers within the network.

Assuming that the adversary can associate NDN routers with their physical
location using existing techniques, we focus on designing algorithms that allow
the adversary to identify which router is the closest to the consumer. We then
show that our techniques can be used not only to determine consumers’ location,
but also to detect “eavesdroppers” that are surreptitiously requesting content for
a particular set of users (e.g., in audio/video conferencing applications [14], [33]).
We validate our results via experiments on the official NDN testbed [21]. Finally,
we propose some countermeasure that mitigate these attacks.

We believe that this work is timely and important, because one of the key
design goals of NDN is security by design, in contrast with today’s Internet where
security and privacy problems were (and are still being) identified along the way.
Therefore, assessing if and how geo-location and eavesdroppers identification can
be implemented must be done before NDN is fully deployed. Furthermore, even
though the research community has put significant effort towards geo-location of
hosts in the current Internet [9], [13], [16,17], [23,24], [29,30,31], none of these
techniques apply to locating consumers in NDN. (See Section 3.) In fact, to the
best of our knowledge, all prior techniques rely on the ability to directly address
the intended victim host. The same is not possibly in NDN since it does not
allow consumers to be contacted directly.

Organization: We start by describing the NDN architecture in Section 2. Related
work and its applicability to NDN is discussed in Section 3. Section 4 introduces
our system and adversary models. Proposed techniques are presented in Section 5
and evaluated in Section 6. Detection of eavesdroppers is addressed in Section 7.
Finally, geo-location countermeasures are presented in Section 8. We conclude in
Section 9.

2 NDN Overview

NDN supports two types of packets: interest and content [4]. Notable fields in
content packets are: (1) content name, (2) payload, and (3) digital signature



computed by the producer. Names are intended to be human-readable, consisting
of one or more components with a hierarchical structure. In NDN notation, “/”
separates name components, e.g., /ndn/cnn/politics.

Consumers request desired content by name, via interests. NDN routers
forward interests towards the content producer responsible for the requested
name, using longest name-prefix matching for routing. If the requested content
is not encountered in caches of any intervening routers, the interest eventually
arrives to the producer. Upon receipt of the interest, the producer injects the
content into the network, thus satisfying the interest. The requested content
packet is then forwarded towards the consumer, traversing – in reverse – the
path of the preceding interest.

Each NDN router maintains three data structures to manage content packet
forwarding: Pending Interest Table (PIT) used to store interests that are not
yet satisfied, Forwarding Interest Base (FIB) containing routing information,
and Content Store (CS) used to cache forwarded content. When an NDN router
receives an interest, it first looks up its PIT to check whether another interest
for the same name is currently pending. There are four possible outcomes:
1. If the same name is already in the router’s PIT, and the arrival interface of the

present interest is already in the set of arrival-interfaces of the corresponding
PIT entry, the interest is discarded.

2. If a PIT entry for the same name exists, yet the arrival interface is new,
the router updates the PIT entry by adding a new interface to the set. The
interest is not forwarded further. This is called interest collapsing.

3. The router looks up content name (referenced in the interest) in its cache
and finds the content there. The content is returned on the arriving interface
of the interest and the latter is discarded.

4. Otherwise, the router creates a new PIT entry and forwards the present
interest out on one or more interfaces, using its FIB.

However, note that caching of all content by all routers is not guaranteed.
Although each router is expected to cache content, it is not mandated to do so.
A router can choose whether to cache a given content based on local criteria,
such as: size and occupancy rate of its cache, content name, as well as consumer
or producer wishes, i.e., the interest might request caching or no caching, or the
content itself might convey caching preferences.

3 Related Work

The goal of current geo-location techniques is to associate a physical location with
a particular IP address. There are many studies that investigate geo-location in
today’s Internet [9], [13], [16,17], [23,24], [30,31]. Prior work can be divided in two
classes: measurement-based and database-driven techniques. The former involve
a set of geographically distributed landmark hosts with known locations. The
purpose of these hosts is to determine the position of the target IP address using
round-trip time (RTT) information as the basis for triangulation. An algorithm
estimates the location of the target IP using historical data constructed using



ground truth [13]. Multiple techniques can then be used to improve accuracy.
For example, Wong et al. [30,31] combine delay measurements with locations of
cities. In [31] they use Bézier curves to represent a region containing the target
IP, while in [30] they leverage a three-tiers approach, where every tier refines
results of the previous one. Finally, Eriksson et al. [9] propose a learning-based
approach, where population density is used to construct a Näıve Bayes estimator.

All these techniques assume that, packets sent to a particular IP address
and echoed back (e.g., via ping) are guaranteed to come from the same physical
host. Therefore, multiple RTT measurements correspond to the same target. In
contrast, requesting multiple NDN content packets created by the same producer
does not guarantee that requested content will be found at the same place.
Because of in-network caching, different content packets might be served by
distinct entities. Thus, RTT measurements obtained by the landmarks can refer
to different nodes, and cannot be immediately used to locate a single target.

Database-driven approaches determine the target IP’s location using DNS
LOC records, WhoIs lookups, Border Gateway Protocol (BGP) router tables,
and/or other public databases (e.g., ARIN [3], RIPE [25], GeoTrace [12] and
MaxMind GeoIP [11]). These resources either provide direct geographic infor-
mation, as in DNS LOC, or reveal indirect clues, such as the organization or
Autonomous System (AS) number that owns a particular IP address. For exam-
ple, techniques like GTrace [24], GeoTrack and GeoCluster [23] use these public
resources to locate the target IP, and then further refine their findings using RTT
measurements. Recent work by Liu et al. [17] utilizes location data that users
willingly disclose via location-sharing services. This technique can locate a host
with a median estimation error of 799 meters – an order of magnitude better
than other approaches.

Because NDN consumers have no network-layer addresses, current geo-location
techniques cannot be directly applied to consumers. However, it is possible to use
current techniques to locate content producers. Although there are no addresses
that can identify hosts in NDN, name-spaces can serve the same purpose. In fact,
all producers publishing within specific namespaces (e.g., /cnn/, or /microsoft/)
might be naturally grouped into the same Autonomous System (AS). Name
prefixes could thus reveal location information. Similarly, routing tables can
reveal location information for name-spaces. Although at this stage there are no
location databases for NDN, it is not hard to imagine that these resources will
become available if and when NDN becomes widely deployed.

4 System and Adversary Model

In the rest of the paper we consider the scenario illustrated in Figure 1. A
consumer (C) retrieves content, composed of multiple packets, from a producer
(P ). We focus on the case where C requests non-popular content, i.e., content that
is unlikely to have been recently requested by others; thus, not cached in relevant
routers. Each interest and the corresponding content packet traverses multiple
routers before being satisfied by P . The adversary (Adv) controls a set of hosts
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Fig. 1. Scenario considered throughout the paper

(hereafter called landmarks), connected to NDN routers. These hosts controlled
by Adv have no special privileges and cannot eavesdrop on links between routers.
We denote router i as Ri and landmark j as Lj . The goal of Adv is to determine
C’s location in the network, i.e., identify the router closest to C.

4.1 System Model

We represent a network topology as a undirected graph G = 〈V,E〉, where V is
the set of vertices (routers) and E is the set of edges (links between routers). Our
experiments on the official NDN testbed (detailed in Section 6) show that NDN
links are symmetric, i.e., bandwidth and delay are the same in either direction.
For this reason, our system model considers all links symmetric.

We performed experiments on the AT&T topology from Rocketfuel [26],
depicted in Figure 2. It contains 625 vertexes and 2101 edges.

In our experiment we assume that every router caches content packets, which
is the default setting for NDN routers. However, because NDN does not mandate
a specific caching policy, we also discuss how to apply our geolocation techniques
when some (or all) routers do not cache content packets (see Section 5).

4.2 Adversary Model

We assume that C requests – and Adv can exploit – a large number of data
packets, possibly corresponding to a single piece of content, e.g., a high-resolution
video. We consider two distinct classes of adversaries: outsiders and insiders.
The former cannot directly (passively) monitor packets exchanged between P
and C. We assume that an outsider knows what type of applications C and P
are using. Therefore it might infer the structure and naming of content packets.
However, if unique/secret naming is negotiated between P and C, outsiders
cannot guess content names. Insiders can observe packets exchanged by P and
C. For example, an insider could be a compromised WiFi access point to which
C is directly connected, or a malicious P . Thus, countermeasures such as content
name randomization are not effective.

In our analysis, we assume the following:

1. Topology Information: Adv knows the topology and geographic distri-
bution of routers. Today some AS-s already publish this information [26].



Fig. 2. AT&T topology

Moreover, it has been shown that it is possible to reconstruct topology
information when it is not publicly available [7].

2. Routing Information: Adv is aware of how interests are routed. Given the
sheer number of routers and AS-s involved in today’s Internet routing, it is
hard to believe that routing information can be kept secret.

3. Distance from Sources: Adv can determine the distance of a content
packet (expressed in terms of number of hops) from its closest source (e.g., a
cache) using Content Fetch Time (CFT) information, i.e., the time between
sending an interest and receiving the related content. Our experiments on the
official NDN testbed [21], reported in Section 6, confirm that this is indeed
currently possible.

4. Naming Information: Adv can predict the name of content packets re-
quested by C. As mentioned before, insiders and outsiders have different
capabilities with respect to this.

5. Arbitrary Landmark Location: Adv can connect landmarks to arbitrary
routers in the network. For example, it can use a geographically distributed
botnet, or purchase resources from (multiple) cloud services with machines
located in different parts of the world. We allow Adv to select landmarks
adaptively (i.e., the next landmark is selected after gathering information
from all current landmarks) or non-adaptively, meaning that all landmarks
are chosen at once.



6. Upper bound on Landmarks: Adv can compromise (or purchase) up
to a fixed subset of nodes in a given topology, in order to turn them into
landmarks.

We refer to Adv with all aforementioned capabilities as routing-aware. As an
extension, we will later consider a variant Adv without any knowledge of routing
information. We denote it as non-routing-aware.

5 Locating Consumers in NDN

To locate C, Adv requests cached content previously requested by C from multiple
landmarks Li. Each landmark measures the CFT for each content. Since content
is cached (and therefore served) by some router on the return path between C
to P (P→C henceforth), landmarks might learn some information about P→C.
Hence, Adv can use this information to infer the location of C.

If no intervening router caches content, Adv can use the NDN interest collaps-
ing feature to locate C. For the sake of simplicity, and without loss of generality,
we describe the steps Adv performs to locate one specific Ri.

Recall that, as an interest traverses each router on the path from C to P , it
creates state in the form of a PIT entry. After receiving the interest, P injects
requested content into the network. As the content travels back towards C, each
router that forwards it flushes the corresponding PIT entry for that content.
However, if an interest from a landmark reaches Ri before the corresponding PIT
entry is flushed, (i.e., before the content packet requested by C arrives), the CFT
measured by the landmark will be lower than the CFT for content fetched from
P . This is due to interest collapsing: the landmark’s interest is not forwarded by
Ri since an entry for previously pending interest (for the same content) already
exists in Ri’s PIT. As shown in [2], this CFT difference can be easily identified
by the landmark. In practice, different routers will adhere to different caching
strategies. Thus, while some routers might cache all packets, others will not.
Therefore, each landmark might have to probe either PIT-s, or CS-s, or both.

Regardless of caching, Adv can only retrieve content previously requested
by C from routers, and not from C itself. Adv’s interests are routed toward
P , and can reach C only if C is on a path Adv→P . However, because C is a
host and not a router, it is never part of Adv→P . For this reason, we define
Adv’s goal as identifying C’s first-hop router. Identifying this router allows the
adversary to accurately pinpoint the consumer location, e.g., possibly within a
few blocks on a densely populated city. Moreover, compared to expected errors in
current geo-location techniques (on the order of 10 km using state-of-the-art [17]),
identifying an edge router instead of an end-host introduces only negligible errors.
For this reason, in the rest of the paper we use C to indicate the edge router
closest to the actual consumer.

Routing-Aware Adversary. Knowledge of the network topology and of all
routing tables allows landmarks to identify the source of content packets via
CFT measurements. This information reveals how far the content travels in



the network to reach the landmark. Given this distance, as well as topology
and routing information, Adv can determine which router served the content.
Listing 1.1 describes the steps Adv performs to identify C. For each Li, Adv
calculates path Li→P and measures the number of hops (i.e., hopsLi) between
Li and the cache serving the content (see lines 6 and 10, Listing 1.1). Then, Adv
identifies the router at position hopsLi

in the path Li→P as a router on P→C.
NC represents the set of candidate nodes for C (lines 11-15).

Intuitively, the location of landmarks with respect to routers on the path
P→C affects how precisely C can be located. In the non-adaptively landmarks’
selection, Adv randomly selects all landmarks at once. In the adaptive case,
landmark selection is performed as follows. Let Rg be a router identified by Adv
as part of the path P→C. To find the next router on the path, Adv selects a
landmark Li that is far away from P , such that the path from Li to P contains
Rg (i.e., Li→P = Li→Rg→P ). Thus, if Li retrieves content cached by router
Ri 6= Rg, then Ri must (1) be on P→C, and (2) be n ≥ 1 hops closer to C
compared to Rg. The larger n, the fewer landmarks are required to identify C.
This process is repeated until no new landmarks are able to discover routers
closer to C, or if Adv reached its maximum number of landmarks.

Listing 1.1. GuessPath - Routing Aware Adversary

1 Input: G; P ; landmarks L; gateway routers; edge routers
2 Output: NPath (nodes believed to be part of the path P→C);
3 NC (nodes believed to include C)
4 NPath ← P
5 NC ← ∅
6 for each available landmark Li {
7 pathLi ← calculate path Li→P , ordered from Li to P
8 hopsLi ← number of hops measured when retrieving from Li

9 NPath ← NPath∪ {element at position hopsLi in pathLi}
10 }
11 for each n, s.t. n in NPath, and n is a gateway router {
12 for each n̄, s.t. n̄ is an edge router, and n̄ is connected to n {
13 NC ← n̄
14 }
15 }

Non-Routing-Aware Adversary. The non-routing-aware adversary has no
knowledge of the content of routing tables. Without this knowledge, measuring
distances between the caches satisfying the landmarks’ interests and the landmarks
does not provide as much information as in the case of routing-aware adversaries.
In fact, given a distance, Adv can identify a set of caching routers that contains
the one serving her requests, instead of a single router. In this case the Adv’s
strategy includes three phases: Phase 1 : collecting information from landmarks
to assign a score to each node, Phase 2 : using scores to determine routers that
are likely in the path; and Phase 3: further refining the selection. Pseudocode for
the three phases is reported in Listing 1.2.



Listing 1.2. GuessPath - Non-Routing Aware Adversary

1 Input: G; P ; landmarks L; threshold; numberOfComp;
2 gateway routers; edge routers
3 Output: NPath (nodes believed to be part of the path
4 P→C); NC (nodes believed to include C)
5 NPath ← P , NC ← ∅
6 for each landmark Li {
7 Ri ← router at one hop from Li

8 }
9 PHASE 1

10 for i = 1 to size(L) {
11 hopsLi ← number of hops measured when retrieving from Li

12 hopsRi ← Li − 1
13 suspectNodesLi ← all nodes nLi at distance hopsLi from Li

14 suspectPathsLi ← all possible paths to reach nodes
15 suspectNodesLi from Li

16 for each landmark Lj 6= Li {
17 if ∃ spath in suspectPathsLi , s.t. Rj is in spath {
18 hopsLj ← number of hops measured when
19 retrieving from Lj

20 if ((hopsRj ) 6= hopsLi − (position of Rj in spath)){
21 remove spath from suspectPathsLi

22 }
23 }
24 }
25 for each spath in suspectPathsLi {
26 n = node at position hopsLi in spath
27 Scoren = Scoren + 1/(hopsLi)

2

28 }
29 }
30 PHASE 2
31 for each n in V {
32 if (Scoren > threshold) {
33 N ′

Path ← n
34 }
35 }
36 PHASE 3
37 NPath ← getConnComp(N ′

Path, numberOfComp)
38 for each n in NPath and n is a gateway router {
39 for each n̄ is an edge router and n̄ connected to n {
40 NC ← n̄
41 }
42 }

Phase 1 is based on two observations. The first is that estimation done
independently by each landmark Li (i.e., suspect nodes computed in line 13 in
Listing 1.2) could be partially incorrect. Because Li does not have access to
routing information, it might include routers that are not in the path P→C.
However, estimates from different landmarks can be checked against each other



for consistency: nodes that are not consistently considered as potential routers
in the path from C to P will be assigned a zero score. This consistency check
(lines 16-24 in Listing 1.2) is motivated as follows. Because each landmark Li

is connected to just one router Ri, learning the number of hops from Li to the
source also implies learning the distance from Ri to the source of the content.
Moreover, because routing information is not available to Adv, every path from
Li to a “suspect” node is a candidate (suspect) path. Let us consider the situation
in Figure 3(b) where Rj , one hop away from Lj , belongs to a suspect path for
Li. In this case, the distance measured by Li and Lj for Rj must be the same. If
the two distances differ from each other, the suspect path for Li is considered to
be incorrect and no score is added to the suspect node, as shown in Figure 3(c).

Suspect node 
for Li 

Actual source for 
the content for 
both Li and Lj 

First suspect 
path for Li 

Second suspect 
path for Li 

(a) Legend for figures 3(b) and 3(c)
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Ri 
 (hopsR  = 3) 

no score 
added score  

= 
 score + 1/9 

Rj 

j i 
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(c) Score assignment

Fig. 3. Non-routing aware - Phase 1

The second observation is used to add a score to the nodes selected as possible
candidates to be on the P→C path (denoted hereafter by NPath). In this case,
the closer Li is to NPath, the more specific is the information provided by Li.
For example, if we connect Li to a node in this path, Li could identify the source
without error – the content will be retrieved in zero hops, i.e., from the same
router to which Li is connected. Instead, if we connect Li at a certain distance
(denoted as hopsLi

) from a node on NPath, Li will consider any node that is
hopsLi

-hops away from itself as a possible node in NPath. As a consequence, the
greater hopsLi

, the higher is the number of candidate nodes; thus, errors are more
likely. In Listing 1.2, this observation is reflected in line 27 where 1/(hopsLi)

2 is
used to assign a score to the nodes. The intuition behind this assignment has a
geometric explanation. Considering the selected node Li as the center of a sphere
and the distance hopsLi

as the radius, the area of the sphere is a good estimator
of the number of candidate nodes.



Phase 2 uses the scores provided in Phase 1 to select a number of nodes
as sources of content packets. In this case, we select the nodes that exceed a
predefined threshold as possible sources.

Phase 3 further refines node selection. We use the set of selected nodes from
Phase 2 to create a subgraph of G. Then, we compute connected components
in this new graph and we order them from the closest to the farthest from
the producer. We consider the distance from a component ConnComp[i] to
the producer as the distance, computed in graph G, from the closest node of
ConnComp[i] to the producer. Therefore, Adv assumes that the nodes from
ConnComp[0] to ConnComp[k − 1] are in the path P→C. Finally, we consider
all edge nodes connected to gateway nodes in NPath as the nodes that include C.

Landmarks are selected to minimize the difference between: (i) the score
assigned to the new landmark by the previous selection step, and (ii) the average
score.

6 Evaluation

In the current Internet, the relationship between RTT and distance measured
in hops is subject to variation of the triangle inequality. Such variations make
RTT-based distance estimation unreliable [18]. We studied this phenomenon on
the NDN tested, and we evaluate how it affects the attacks discussed in this paper.
To this end, we used Amazon Elastic Compute Cloud (EC2) [8] virtual machine
instances. Each EC2 instance was connected to the testbed at a different router,
and was used to either publish or request content. We performed exhaustive
tests, including producer/consumer combinations. Figure 4(b) summarizes our
findings. It also shows approximate physical straight-line distance between NDN
nodes. Reported CFT is obtained after subtracting the CFT between the EC2
instance acting as C and the first-hop router. Our experiments confirm that: (1)
links between routers are symmetric in terms of bandwidth and delay, except as
discussed below; (2) triangle inequality violations only add a small amount of
noise to distance estimation.

CFT is symmetric for every link except for UA-REMAP, PKU-UCLA and
PKU-NEU. In the first case, asymmetry is due to the paths UA→REMAP vs
REMAP→CSU→UA. We consider asymmetry in PKU-NEU and PKU-UCLA
links to be an artifact of the current NDN testbed, since it is deployed as an IP
overlay, and not a property of NDN.

We ran multiple experiments in which we connected P and C to different
nodes. For every experiment we measure CFT connecting landmarks to all nodes
in the testbed. Our measurements reveal that 8% of landmarks provided an
incorrect distance, likely due to violation of triangle inequality. Therefore, actual
distance measurements on the testbed would be affected by “random noise” with
probability 8%.



PKU
NEU

UCLA REMAP

UCI

UCSD UA

CSU

UM

WashU

UIUC UMICH

(a) Testbed topology [21]

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300

U
C

L
A

<
->

R
E

M
A

P
U

C
L

A
<

->
U

C
I

U
C

I<
->

R
E

M
A

P
U

C
S

D
<

->
U

C
I

U
C

L
A

<
->

U
C

S
D

W
A

S
H

U
<

->
U

IU
C

W
A

S
H

U
<

->
U

M
M

IC
H

<
->

U
IU

C
U

C
S

D
<

->
U

A
R

E
M

A
P

<
->

U
A

U
M

<
->

M
IC

H
M

IC
H

<
->

N
E

U
C

S
U

<
->

U
A

C
S

U
<

->
U

IU
C

U
C

L
A

<
->

C
S

U
R

E
M

A
P

<
->

C
S

U
M

IC
H

<
->

C
S

U
U

M
<

->
N

E
U

U
A

<
->

U
M

U
A

<
->

W
A

S
H

U
P

K
U

<
->

U
C

L
A

P
K

U
<

->
N

E
U

 0
 15
 30
 45
 60
 75
 90
 105
 120
 135
 150

C
F

T
(m

s
)

D
is

ta
n

c
e

 (
k
m

) 
* 

1
0

0
0

Link

Node 1 -> Node 2
Node 1 <- Node 2

Distance

(b) Link CFT

Fig. 4. NDN Testbed

6.1 Performance of Our Algorithms

To evaluate the effectiveness of our strategies, we defined three metrics, which can
be informally summarized as: (a) how effective are our strategies in identifying
nodes in the path? (b) Of the selected nodes, how far from C is the closest?
(c) How often do our strategies correctly identify C? Although (c) is arguably
the most “natural” metric, it is also the one that provides the least amount of
information, representing a simple binary outcome (identified/not identified).
Therefore, we believe that (a) and (b) complement this metric by providing
further details on how close Adv is to identifying C.

We express (a) as two quantities: true positive (i.e., nodes that have been
correctly identified) and false positives (nodes that have been erroneously flagged
as part of the path):

True positive=
# of output nodes in the path

# of total nodes in the path

False positive=
# of output nodes not in the path

# of total nodes not in the path

We compared our strategy with random guessing. This represents the best
adversarial strategy if NDN truly provides consumer anonymity, i.e., if the
adversary can gather no information at all about consumers. We model random
guessing using the urn model without replacement [10] where the number of
draws q is the number of nodes identified by our strategy in the same setting.
Let N be the number of nodes in the topology, and m the length of the path
P→C. The probability of choosing j nodes from the path is:

P(j) =

(
m
j

)(
N−m
q−j

)(
N
q

) (1)



We calculate true pos for our random strategy as the expected number of nodes
chosen from the path, divided by the number of nodes:

true pos =

(∑min(m,q)
j=1 j · P(j)

)
m

(2)

Analogously, false positive are calculated as the expected number of incorrectly
selected nodes (q − j) divided by the number of nodes:

f alse pos =

(∑min(m,q)
j=0 (q − j) · P(j)

)
(N −m)

(3)

With respect to (b), we select as baseline the average distance to the consumer
in the network. In particular, we calculate the average of the distance from every
node in the network to the consumer as:

avg =

(∑N
i=0 d (i)

)
N

(4)

where d(i) is the distance of node i from the consumer.
We report results for paths of length 6. This length was selected since it is

the most likely distance in both topologies (see Figure 5.)
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Routing-Aware Adversary – Non-Adaptive Landmarks Selection. Re-
sults in this configuration for AT&T are reported in figure 6(a). Our technique is
able to keep false positive very low due to the availability of routing information.
It is interesting to note that the algorithm is not always able to guess all the
nodes in the path, regardless of the number of landmarks used. The reason for
this is that, sometimes, a router in the path cannot satisfy any interest from the
landmarks because these interests can always be satisfied by other routers.

Figure 6(b) compares our strategy with random guessing. In this case, our
guess for C is almost always at most two hops away from C, compared to five
hops for random guessing.



Figure 6(c) shows how often our algorithm identifies the consumer. When our
strategy is able to identify at least one node one hop away from the consumer
node, it always identifies the consumer node. This is the case with 200 and 350
landmarks, where our strategy identifies C in the vast majority of our simulations.
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Fig. 6. Routing aware adversary - Non-adaptive landmarks selection

Routing-Aware-Adversary – Adaptive Landmarks Selection. Figure 7
shows the performance of our technique in this scenario. The ability to adaptively
select locations within the network allows Adv to easily identify C in both
topologies. Figures 7(b) and 7(c) show that, with 100 landmarks, our algorithm
is able to identify C with over 90% probability.
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Non-Routing-Aware Adversary – Non-Adaptive Landmarks Selection.
Figure 8 shows performance of Listing 1.2 on AT&T with respect to false positives
and false negatives. Our experiments were performed with threshold and k set
respectively to 1.5 and 2. Compared to routing aware adversary, the number of
false positives is higher. However, overall performance is still good: Figure 8(a)
shows that false positives are below 20%. Similarly to the routing-aware case, we
are not able to always guess the entire path P→C, as reported in Figure 8(b). A
similar behavior is shown in Figure 8(c).
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Fig. 8. Non-routing aware adversary - Non-adaptive landmarks selection

Non-Routing-Aware Adversary – Adaptive Landmarks Selection. Per-
formance of this scenario are reported in Figure 9. Figure 9(a) shows that our
algorithm reduces the number of false positives in the AT&T topology. This
strategy is able to significantly outperform random guessing strategy (figures
9(b) and 9(c)).

Table 1 summarizes the performance of all our strategies. We report perfor-
mance of random guessing obtained under the same conditions.

Table 1. Performance of our strategies

number of % of consumer guessed
landmarks our strategy random guessing

Non-routing aware
non-adaptive 350 99,3% 7,4%
adaptive 200 100% 0,5%

Routing aware
non-adaptive 350 93,0% 25,4%
adaptive 350 77,1% 19,3%
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7 Detecting Eavesdroppers

Although C might be the only intended recipient of a set of content packets from
P , NDN allows any host to later retrieve these packets from routers’ caches and
possibly do so without either P or C being able to directly detect this action.
This can be seen as an effective means of eavesdropping in NDN: in contrast with
“traditional” eavesdropping, this approach does not require privileged access to the
networking infrastructure and can be performed independent of the geographic
location of Adv with respect to P and C.

One way to detect this type of eavesdropping is by using techniques presented
in this paper. For example, P and C could “rent” a set of geographically dis-
tributed hosts while they are exchanging content packets. These rented hosts
would implement the algorithms discussed in the paper. Eavesdroppers will then
be consistently identified as extraneous consumers (other than C), and possibly
located. We envision that such a service could be easily offered by companies
such as Amazon, Microsoft, or other geographically distributed cloud providers.

8 Discussion of How to Mitigate Geo-location Attack

One natural approach to prevent aforementioned attacks is to simply disable
router content caching. Besides negating one of the main benefits on NDN, efficacy
of this countermeasure is limited. In fact, an insider Adv that knows exact timing
of interest packets emitted by C can implement PIT-based techniques outlined
in [2]. Under normal conditions, Adv has a very small window (a few ms to a few
hundreds ms) to extract information from PIT-s on a single packet. However, it
is safe to assume that P and C exchange a large number of content packets. This
significantly simplifies the attack. Moreover, an insider Adv could delay injecting
content packets into the network upon receiving an interest. This would force



interests from C to be stored in all PITs along the path P→C for longer, thus
further simplifying the attack.

A better approach involves using unpredictable names [1]: P and C can initially
agree on a secret seed (e.g., via authenticated Diffie-Hellman key exchange) and
use it to generate pseudo-random content names. Since the seed would be known
only to the two communicating parties, no outsider can guess content names. Adv
therefore cannot request content, which is necessary to locate C. Unfortunately,
this solution requires both P and C to be actively engaged in the secret agreement
procedure. This could generate a significant (additional) load on P , and will
negating the benefit of caching and interest collapsing. Furthermore, this approach
is ineffective against insider Adv who knows the seed.

Another approach is to “confuse” Adv by requesting content packets from
multiple geographic locations at the same time. Intuitively, since in this case
there are multiple consumers, geo-location algorithms would identify many of
them with roughly the same probability, offering a weak form of privacy (i.e.,
k-anonymity [27]) and deniability to C.

To the best of our knowledge, the only approach completely effective against
attacks discussed in this paper is the anonymizing network ANDaNA [6]. AN-
DaNA is an NDN equivalent of Tor [28]. It allows end host to join an anonymizing
network as “onion routers”, which anonymize consumers’ requests. Unfortunately,
the additional overhead and latency might be prohibitive for many applications.

9 Conclusion

In-network content caching, a key feature of NDN, has been shown to have
unexpected privacy implications [1]. In this paper, we provided another example
of how abuse of in-network state can lead to loss of privacy in NDN. We designed
several techniques geared for adversaries with varying capabilities. We evaluated
proposed techniques via simulations on realistic network topologies. We then
used the actual NDN testbed to validate our results.

Experiments show that realistic adversaries can locate consumers with high
probability, i.e., over 90% in many scenarios. Furthermore, even adversaries with
relatively little knowledge of the network can successfully locate consumers with
high probability, albeit, using more resources.

We then discussed several countermeasures, showing that even disabling caches
on all routers does not completely prevent this attack. Moreover, the only effective
countermeasure we are aware of (ANDaNA) imposes significant overhead on the
communicating parties. Finally, we sketched out how the proposed techniques
can help identify eavesdroppers in NDN, which is a rather unexpected outcome
of router state.

We believe that the impact of our results goes beyond geo-location. NDN has
been widely assumed to provide better consumer privacy than the current IP-based
Internet due to lack of source/destination addresses. However, this paper casts
serious doubt on this belief. Further, we argue that our geo-location techniques



apply, to some extent, not only to NDN, but to any network architecture that
supports ubiquitous caching.
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Appendices

In this section we provide details on the algorithms used in our experiments,
and on experimental results performed on the Verio topology [26]. Appendix A
presents two secondary functions used in the main algorithm (Listing 1.2, Section
5). In Appendix B, we provide visualization of Verio network topology and, in
Appendix C, we report results of our experiments on this topology. In Appendix D,
we determine the performance of our geo-location techniques when P and C are
separated by either more or less than six hops. Finally, in Appendix E, we show
other testbed measurements that reveal how accurately CFT estimates distance
between two nodes.

A Algorithms

In this section, we report pseudo-code of two secondary functions (listings 1.3
and 1.4) used in the main algorithm (Listing 1.2, Section 5). Listing 1.3 presents
the steps that Adv performs to choose new landmarks in the non-routing aware
scenario. Landmark selection is performed with the intent to minimize the
difference between (1) the score (Scorej) assigned to the new landmark Lj in
Phase 1, and (2) the average score.

Listing 1.3. AdaptiveSelection - Non-RoutingAware Adversary

1 Input: G; P ; score Score of every node ni ∈ NPath}
2 Output: n (next node to be selected as a landmark)}
3
4 avg ← Average(Score)
5 nj ∈ NPath s.t. scorej = min( |Scorej − avg| )
6 n← nj

Listing 1.4 shows how Adv calculates the k connected components closer
to P in the non-routing-aware scenario (Phase 3 of Listing 1.2). Adv uses set
N from Phase 2 to create a subgraph of G. Then, Adv computes connected
components in this new graph, and sorts them from the closest to the farthest
from the producer (lines 5-7). The distance from a component ConnComp[i]
to the producer is the distance from the closest node of ConnComp[i] to the
producer. Finally, the algorithm in Listing 1.4 outputs the nodes in the first k
components (i.e., ConnComp[0] to ConnComp[k − 1]).

Listing 1.4. getConnComp

1 Input: N (set of nodes retrieved in Phase 2);
2 k (number of components to consider)
3 Output: N ′(nodes in the k closest connected components to P )
4
5 G′ = subgraph of G with nodes in N
6 calculate connected components ConnCompi in G′

7 calculate distance from P to node in ConnCompi closest to P



8 order components according to distance
9 for i = 1 to k {

10 N ′ ← nodes of components ConnCompi
11 }

B Verio Topology

Figure 10 depicts Rocketfuel’s [26] representation of the Verio topology. This
topology contains 921 vertexes and 2780 edges. Edge routers, gateway routers
and border routers are represented with different symbols.

(a) Verio topology

Fig. 10. Verio topology



C Performance of Our Approach on Verio

In this section, we report results of our techniques on Verio. Figures 11 and 12
depict routing-aware scenario. As for AT&T, in both non-adaptive and adaptive
landmarks selection our strategy is able to significantly outperform random
guessing strategy. Moreover, in the adaptive landmarks selection (Figure 12(c)),
our strategy needs 50 landmarks to identify C with over 90% probability, which is
an improvement compared to the result on AT&T (see Figure 7(c) for comparison).
Experiments on Verio were performed using threshold = 3 and k = 2.
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Fig. 11. Routing aware adversary - Non-adaptive landmarks selection
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Fig. 12. Routing aware adversary - Adaptive landmarks selection

Figures 13 and 14 show results for Verio in the non-routing aware scenario.
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Fig. 13. Non-routing aware adversary - Non-adaptive landmarks selection

0%

20%

40%

60%

80%

100%

2
5

5
0

1
0
0

2
0
0

3
5
0

%
 o

f 
p
a
th

 g
u
e
s
s
e
d

Number of landmarks

random guessing true positive
our strategy true positive

random guessing false positive
our strategy false positive

(a) Verio - guessing path

 0

 1

 2

 3

 4

 5

 6

 7

2
5

5
0

1
0
0

2
0
0

3
5
0

N
u
m

b
e
r 

o
f 
h
o
p
s

Number of landmarks

our strategy
random guessing

(b) Verio - node closest to
consumer

0%

20%

40%

60%

80%

100%

2
5

5
0

1
0
0

2
0
0

3
5
0

%
 o

f 
c
o
n
s
u
m

e
r 

g
u
e
s
s
e
d

Number of landmarks

our strategy
random guessing

(c) Verio - guessing consumer

Fig. 14. Non-routing aware adversary - Adaptive landmarks selection

D Results for Different Lengths of Paths P→C

In this section we briefly show how our technique behaves when P and C are
separated by four and eight hops. Figure 15 depicts results obtained in the
routing-aware scenario. When P and C are closer than six hops, the performance
of our algorithm decreases (Figure 15(a) compared to Figure 6(c)). By selecting
nodes as far as possible from P , our strategy is penalized in this scenario because
nodes from the path are selected after a possibly large number of rounds. Using
a relatively large number of landmarks (e.g., 200), our strategy is able to identify
C with probability ≈95%. (For comparison, in the same setting random guessing
is able to identify the consumer with probability 1%.) When considering paths of
eight hops, 25 landmarks are sufficient to identify C with probability 40%.

Figure 16 shows the performance of our technique in the non-routing aware
scenario. In this case, if we use up to 200 landmarks, the performance on four-
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Fig. 15. Verio: Routing aware adversary - Adaptive landmarks selection

hops-long paths are better than on eight-hops-long paths. With 350 landmarks,
our technique has better performance on paths of length eight.
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Fig. 16. Verio: Non-Routing aware adversary - Adaptive landmarks selection



E Testbed Measurement

Figures 17(a) and 17(b) show that CFT can be used to accurately estimate
distance. In Figure 17(a), we connected P to University of California, Irvine
(UCI) and C to University of Arizona (UA), while in Figure 17(b) we connect
C to the University of Memphis node. Landmarks were connected to all nodes
in the testbed. In both cases, 8% of landmarks provided an incorrect distance,
likely due to violation of triangle inequality. Therefore, we added “random noise”
with probability 8% in our experiments.
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Fig. 17. Requesting content published at UCI
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