
PassGAN: A Deep Learning Approach for
Password Guessing? ??

Briland Hitaj1, Paolo Gasti2, Giuseppe Ateniese1, and Fernando Perez-Cruz1,3

1 Stevens Institute of Technology, Hoboken, NJ 07030, USA
{bhitaj,gatenies}@stevens.edu

2 New York Institute of Technology, New York, NY 10023, USA
pgasti@nyit.edu

3 Swiss Data Science Center, (ETH Zurich and EPFL)
fernando.perezcruz@sdsc.ethz.ch

Abstract. State-of-the-art password guessing tools, such as HashCat
and John the Ripper, enable users to check billions of passwords per sec-
ond against password hashes. In addition to performing straightforward
dictionary attacks, these tools can expand password dictionaries using
password generation rules, such as concatenation of words (e.g., “pass-
word123456”) and leet speak (e.g., “password” becomes “p4s5w0rd”).
Although these rules work well in practice, creating and expanding them
to model further passwords is a labor-intensive task that requires spe-
cialized expertise.

To address this issue, in this paper we introduce PassGAN, a novel
approach that replaces human-generated password rules with theory-
grounded machine learning algorithms. Instead of relying on manual
password analysis, PassGAN uses a Generative Adversarial Network
(GAN) to autonomously learn the distribution of real passwords from
actual password leaks, and to generate high-quality password guesses.
Our experiments show that this approach is very promising. When we
evaluated PassGAN on two large password datasets, we were able to sur-
pass rule-based and state-of-the-art machine learning password guessing
tools. However, in contrast with the other tools, PassGAN achieved this
result without any a-priori knowledge on passwords or common password
structures. Additionally, when we combined the output of PassGAN with
the output of HashCat, we were able to match 51%-73% more passwords
than with HashCat alone. This is remarkable, because it shows that
PassGAN can autonomously extract a considerable number of password
properties that current state-of-the art rules do not encode.

Keywords: Passwords · Privacy ·Generative Adversarial Networks (GAN)
· Deep Learning

? Due to space limitations, an extended version of the paper can be found here: https:
//arxiv.org/abs/1709.00440

?? A preliminary version of this paper appeared in NeurIPS 2018 Workshop on Security
and Machine Learning (SecML’18) [24].

https://arxiv.org/abs/1709.00440
https://arxiv.org/abs/1709.00440

2 Hitaj et al.

1 Introduction

Passwords are the most popular authentication method, mainly because they are
easy to implement, require no special hardware or software, and are familiar to
users and developers [27]. Unfortunately, multiple password database leaks have
shown that users tend to choose easy-to-guess passwords [10,14,36], primarily
composed of common strings (e.g., password, 123456, iloveyou), and variants
thereof.

Password guessing tools provide a valuable tool for identifying weak pass-
words when they are stored in hashed form [49,53]. The effectiveness of password
guessing software relies on the ability to quickly test a large number of highly
likely passwords against each password hash. Instead of exhaustively trying all
possible character combinations, password guessing tools use words from dic-
tionaries and previous password leaks as candidate passwords. State-of-the-art
password guessing tools, such as John the Ripper [55] and HashCat [22], take this
approach one step further by defining heuristics for password transformations,
which include combinations of multiple words (e.g., iloveyou123456), mixed
letter case (e.g., iLoVeyOu), and leet speak (e.g., il0v3you). These heuristics,
in conjunction with Markov models, allow John the Ripper and HashCat to
generate a large number of new highly likely passwords.

While these heuristics are reasonably successful in practice, they are ad-hoc
and based on intuitions on how users choose passwords, rather than being con-
structed from a principled analysis of large password datasets. For this reason,
each technique is ultimately limited to capturing a specific subset of the pass-
word space which depends upon the intuition behind that technique. Further,
developing and testing new rules and heuristics is a time-consuming task that
requires specialized expertise, and therefore has limited scalability.

1.1 Our Approach

To address these shortcomings, in this paper we propose to replace rule-based
password guessing, as well as password guessing based on simple data-driven
techniques such as Markov models, with a novel approach based on deep learn-
ing. At its core, our idea is to train a neural network to determine autonomously
password characteristics and structures, and to leverage this knowledge to gen-
erate new samples that follow the same distribution. We hypothesize that deep
neural networks are expressive enough to capture a large variety of properties
and structures that describe the majority of user-chosen passwords; at the same
time, neural networks can be trained without any a-priori knowledge or an as-
sumption of such properties and structures. This is in stark contrast with current
approaches such as Markov models (which implicitly assume that all relevant
password characteristics can be defined in terms of n-grams), and rule-based ap-
proaches (which can guess only passwords that match with the available rules).
As a result, samples generated using a neural network are not limited to a par-
ticular subset of the password space. Instead, neural networks can autonomously
encode a wide range of password-guessing knowledge that includes and surpasses

PassGAN: A Deep Learning Approach for Password Guessing 3

what is captured in human-generated rules and Markovian password generation
processes.

To test this hypothesis, in this paper we introduce PassGAN, a new approach
for generating password guesses based on deep learning and Generative Adver-
sarial Networks (GANs) [18]. GANs are recently-introduced machine learning
tools designed to perform density estimation in high-dimensional spaces [18].
GANs perform implicit generative modeling by training a deep neural network
architecture that is fed a simple random distribution (e.g., Gaussian or uniform)
and by generating samples that follow the distribution of the available data. In
a way, they implicitly model the inverse of the cumulative distribution with a
deep neural network, i.e., x = F−1

θ (s) where s is a uniformly distributed ran-
dom variable. To learn the generative model, GANs use a cat-and-mouse game,
in which a deep generative network (G) tries to mimic the underlying distri-
bution of the samples, while a discriminative deep neural network (D) tries to
distinguish between the original training samples (i.e., “true samples”) and the
samples generated by G (i.e., “fake samples”). This adversarial procedure forces
D to leak the relevant information about the training data. This information
helps G to adequately reproduce the original data distribution.

PassGAN leverages this technique to generate new password guesses. We
train D using a list of leaked passwords (real samples). At each iteration, the
output of PassGAN (fake samples) gets closer to the distribution of passwords
in the original leak, and therefore more likely to match real users’ passwords. To
the best of our knowledge, this work is the first to use GANs for this purpose.

1.2 Contributions

PassGAN represents a principled and theory-grounded take on the generation of
password guesses. We explore and evaluate different neural network configura-
tions, parameters, and training procedures, to identify the appropriate balance
between learning and overfitting, and report our results. Specifically, our contri-
butions are as follows:

1. We show that a GAN can generate high-quality password guesses. Our GAN
is trained on a portion of the RockYou dataset [57], and tested on two dif-
ferent datasets: (1) another (distinct) subset of the RockYou dataset; and
(2) a dataset of leaked passwords from LinkedIn [35]. In our experiments,
we were able to match 1,350,178 (43.6%) unique passwords out of 3,094,199
passwords from the RockYou dataset, and 10,478,322 (24.2%) unique pass-
words out of 43,354,871 passwords from the LinkedIn dataset. To quantify
the ability of PassGAN to generate new passwords, we removed from the test-
ing set all passwords that were present also in the training set. This resulted
in testing sets of size 1,978,367 and 40,593,536 for RockYou and LinkedIn,
respectively. In this setting, PassGAN was able to match 676,439 (34.6%)
samples in the RockYou testing set and 8,878,284 (34.2%) samples in the
LinkedIn set. Moreover, the overwhelming majority of passwords generated

4 Hitaj et al.

by PassGAN that did not match the testing sets still “looked like” human-
generated passwords, and thus could potentially match real user accounts
not considered in our experiments.

2. We show that PassGAN is competitive with state-of-the-art password gen-
eration rules. Even though these rules were specially tuned for the datasets
used in our evaluation, the quality of PassGAN’s output was comparable to
that of password rules.

3. With password generation rules, the number of unique passwords that can
be generated is defined by the number of rules and by the size of the pass-
word dataset used to instantiate them. In contrast, PassGAN can output
a practically unbounded number of password guesses. Crucially, our exper-
iments show that with PassGAN the number of matches increases steadily
with the number of passwords generated, Table 1. This is important because
it shows that the output of PassGAN is not restricted to a small subset of
the password space.

4. PassGAN is competitive with current state of the art password guessing
algorithms based on deep neural networks [38], matching the performance
of Melicher et al. [38], (indicated as FLA in the rest of the paper).

5. We show that PassGAN can be effectively used to augment password gen-
eration rules. In our experiments, PassGAN matched passwords that were
not generated by any password rule. When we combined the output of Pass-
GAN with the output of HashCat, we were able to guess between 51% (case
of RockYou) and 73% (case of LinkedIn) additional unique passwords com-
pared to HashCat alone.

We consider this work as the first step toward a fully automated generation
of high-quality password guesses. We argue that this work is relevant, important,
and timely. Relevant, because despite numerous alternatives [50,63,16,13,71], we
see little evidence that passwords will be replaced any time soon. Important,
because establishing the limits of password guessing—and better understanding
how guessable real-world passwords are—will help make password-based systems
more secure. And timely, because recent leaks containing hundreds of millions of
passwords [15] provide a formidable source of data for attackers to compromise
systems, and for system administrators to re-evaluate password policies.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we briefly overview
GANs, and password guessing, and provide a summary of the relevant state of
the art. Section 3 provides details regarding our experimental setup, architec-
tural and training choices for PassGAN, and the hyperparameters used in our
evaluation. We report on the evaluation of PassGAN, and on the comparison
with state-of-the-art password guessing techniques, in Section 4. We summa-
rize our findings and discuss their implications, in Section 5. We conclude in
Section 6.

PassGAN: A Deep Learning Approach for Password Guessing 5

2 Background and Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) translate the current advances in deep
neural networks for discriminative machine learning to (implicit) generative mod-
eling. The goal of GANs is to generate samples from the same distribution as that
of its training set S = {x1,x2, . . . ,xn}. Generative modeling [45] typically relies
on closed-form expressions that, in many cases, cannot capture the nuisance of
real data. GANs train a generative deep neural network G that takes as input a
multi-dimensional random sample z (from a Gaussian or uniform distribution)
to generate a sample from the desired distribution. GANs transform the density
estimation problem into a binary classification problem, in which the learning
of the parameters of G is achieved by relying on a discriminative deep neural
network D that needs to distinguish between the “true” samples in S and the
“fake” samples produced by G. More formally, the optimization problem solved
by GANs can be summarized as follows:

min
θG

max
θD

n∑
i=1

log f(xi; θD) +

n∑
j=1

log(1− f(g(zj ; θG); θD)), (1)

where f(x; θD) and g(zj ; θG), respectively, represent D and G. The optimization
shows the clash between the goals of the discriminator and generator deep neural
networks. Since the original work by Goodfellow et al. [18], there have been sev-
eral improvements on GANs [48,2,54,62,20,34,46,58,43,3,29,39,7,11,70,66,51,26]
[5,42,4,9,25,40,72], where each new paper provides novel improvements in the
domain. In this paper, we rely on IWGAN [20] as a building foundation for
PassGAN, being that IWGAN [20] is among the first, most stable approaches
for text generation via GANs.

2.2 Password Guessing

Password guessing attacks are probably as old as password themselves [44], with
more formal studies dating back to 1979 [41]. In a password guessing attack, the
adversary attempts to identify the password of one or more users by repeatedly
testing multiple candidate passwords.

Two popular modern password guessing tools are John the Ripper (JTR) [55]
and HashCat [22]. Both tools implement multiple types of password guessing
strategies, including: exhaustive brute-force attacks; dictionary-based attacks;
rule-based attacks, which consist in generating password guesses from trans-
formations of dictionary words [60,59]; and Markov-model-based attacks [56,37].
JTR and HashCat are notably effective at guessing passwords. Specifically, there
have been several instances in which well over 90% of the passwords leaked from
online services have been successfully recovered [52].

Markov models were first used to generate password guesses by Narayanan
et al. [47]. Their approach uses manually defined password rules, such as which

6 Hitaj et al.

portion of the generated passwords is composed of letters and numbers. Weir et
al. [68] subsequently improved this technique with Probabilistic Context-Free
Grammars (PCFGs). With PCFGs, Weir et al. [68] demonstrated how to “learn”
these rules from password distributions. Ma et al. [36] and Durmuth et al. [14]
have subsequently extended this early work.

To the best of our knowledge, the first work in the domain of passwords
utilizing neural networks dates back to 2006 by Ciaramella et al. [8]. Recently,
Melicher et al. [38] introduced FLA, a password guessing method based on recur-
rent neural networks [19,64]. However, the primary goal of these works consists
in providing means for password strength estimation. For instance, Melicher et
al. [38] aim at providing fast and accurate password strength estimation (thus
FLA acronym), while keeping the model as lightweight as possible, and minimiz-
ing accuracy loss. By keeping the model lightweight, FLA instantiates a password
strength estimator that can be used in browsers through a (local) JavaScript
implementation. To achieve this goal, FLA uses weight clipping without signifi-
cantly sacrificing accuracy. In contrast, PassGAN focuses on the task of password
guessing and attempts to do so with no a priori knowledge or assumption on the
Markovian structure of user-chosen passwords.

3 Experiment Setup

To leverage the ability of GANs to estimate the probability effectively distri-
bution of passwords from the training set, we experimented with a variety of
parameters. In this section, we report our choices on specific GAN architecture
and hyperparameters.

We instantiated PassGAN using the Improved training of Wasserstein GANs
(IWGAN) of Gulrajani et al. [20]. The IWGAN implementation used in this
paper relies on the ADAM optimizer [30] to minimize the training error.

The following hyper-parameters characterize our model:

– Batch size, which represents the number of passwords from the training
set that propagate through the GAN at each step of the optimizer. We
instantiated our model with a batch size of 64.

– Number of iterations, which indicates how many times the GAN invokes
its forward step and its back-propagation step [61,32,33]. In each iteration,
the GAN runs one generator iteration and one or more discriminator itera-
tions. We trained the GAN using various number of iterations and eventually
settled for 199,000 iterations, as further iterations provided diminishing re-
turns in the number of matches.

– Number of discriminator iterations per generator iteration, which
indicates how many iterations the discriminator performs in each GAN it-
eration. The number of discriminator iterations per generative iteration was
set to 10, which is the default value used by IWGAN.

– Model dimensionality, which represents the number of dimensions for
each convolutional layer. We experimented using 5 residual layers for both

PassGAN: A Deep Learning Approach for Password Guessing 7

the generator and the discriminator, with each of the layers in both deep
neural networks having 128 dimensions.

– Gradient penalty coefficient (λ), which specifies the penalty applied to
the norm of the gradient of the discriminator with respect to its input [20].
Increasing this parameter leads to a more stable training of the GAN [20].
In our experiments, we set the value of the gradient penalty to 10.

– Output sequence length, which indicates the maximum length of the
strings generated by the generator (G). We modified the length of the se-
quence generated by the GAN from 32 characters (default length for IW-
GAN) to 10 characters, to match the maximum length of passwords used
during training. We padded passwords shorter than 10 characters using ac-
cent symbol (i.e., “`”); we then removed it from the output of PassGAN.

– Size of the input noise vector (seed), which determines how many
random numbers from a normal distribution are fed as input to G to generate
samples. We set this size to 128 floating point numbers.

– Maximum number of examples, which represents the maximum number
of training items (passwords, in the case of PassGAN) to load. The maximum
number of examples loaded by the GAN was set to the size of the entire
training dataset.

– Adam optimizer’s hyper-parameters:
• Learning rate, i.e., how quickly the weights of the model are adjusted
• Coefficient β1, which specifies the decaying rate of the running average

of the gradient.
• Coefficient β2, which indicates the decaying rate of the running average

of the square of the gradient.
Coefficients β1 and β2 of the Adam optimizer were set to 0.5 and 0.9, respec-
tively, while the learning rate was 10−4. These parameters are the default
values used by Gulrajani et al. [20].

Our experiments were run using the TensorFlow implementation of IWGAN
found at [21]. We used TensorFlow version 1.2.1 for GPUs [1], with Python
version 2.7.12. All experiments were performed on a workstation running Ubuntu
16.04.2 LTS, with 64GB of RAM, a 12-core 2.0 GHz Intel Xeon CPU, and an
NVIDIA GeForce GTX 1080 Ti GPU with 11GB of global memory.

3.1 Password Sampling Procedure for HashCat, JTR, Markov
Model, PCFG and FLA

We used the portion of RockYou dataset selected for training, see Section 4.1,
as the input dataset to HashCat Best64, HashCat gen2, JTR Spiderlab rules,
Markov Model, PCFG, and FLA, and generated passwords as follows:

– We instantiated HashCat and JTR’s rules using passwords from the training
set sorted by frequency in descending order (as in [38]). HashCat Best64
generated 754,315,842 passwords, out of which 361,728,683 were unique and
of length 10 characters or less. Note that this was the maximum number of

8 Hitaj et al.

samples produced by Best64 rule-set for the given input set, i.e., RockYou
training set. With HashCat gen2 and JTR SpiderLab we uniformly sampled
a random subset of size 109 from their output. This subset was composed of
passwords of length 10 characters or less.

– For FLA, we set up the code from [31] according to the instruction provided
in [17]. We trained a model containing 2-hidden layers and 1 dense layer of
size 512. We did not perform any transformation (e.g., removing symbols,
or transforming all characters to lowercase) on the training set for the sake
of consistency with the other tools. Once trained, FLA enumerates a subset
of its output space defined by a probability threshold p: a password belongs
to FLA’s output if and only if its estimated probability is at least p. In
our experiments, we set p = 10−10. This resulted in a total of 747,542,984
passwords of length 10 characters or less. Before using these passwords in
our evaluation, we sorted them by probability in descending order.

– We generated 494,369,794 unique passwords of length 10 or less using the 3-
gram Markov model. We ran this model using its standard configuration [12].

– We generated 109 unique passwords of length 10 or less using the PCFG
implementation of Weir et al. [67].

4 Evaluation

4.1 Training and Testing

To evaluate the performance of PassGAN, and to compare it with state-of-the-
art password generation rules, we first trained the GAN, JTR, HashCat, the
Markov model, PCFG, and FLA on a large set of passwords from the RockYou
password leak [57].4 Entries in this dataset represent a mixture of common and
complex passwords.

RockYou Dataset The RockYou dataset [57] contains 32,503,388 passwords. We
selected all passwords of length 10 characters or less (29,599,680 passwords,
which correspond to 90.8% of the dataset), and used 80% of them (23,679,744 to-
tal passwords, 9,926,278 unique passwords) to train each password guessing tool.
We refer the reader to Section 3.1 for further details on the training procedure of
each tool. For testing, we computed the (set) difference between the remaining
20% of the dataset (5,919,936 total passwords, 3,094,199 unique passwords) and
the training test. The resulting 1,978,367 entries correspond to passwords that
were not previously observed by the password guessing tools. This allowed us to
count only non-trivial matches in the testing set.

LinkedIn Dataset We also tested each tool on passwords from the LinkedIn
dataset [35], of length up to 10 characters, and that were not present in the
training set. The LinkedIn dataset consists of 60,065,486 total unique passwords

4 We consider the use of publicly available password datasets to be ethical, and con-
sistent with security research best practices (see, e.g., [10,38,6]).

PassGAN: A Deep Learning Approach for Password Guessing 9

(43,354,871 unique passwords with length 10 characters or less), out of which
40,593,536 were not in the training dataset from RockYou. (Frequency counts
were not available for the LinkedIn dataset.) Passwords in the LinkedIn dataset
were exfiltrated as hashes, rather than in plaintext. As such, the LinkedIn dataset
contains only plaintext passwords that tools such as JTR and HashCat were able
to recover, thus giving rule-based systems a potential edge.

Our training and testing procedures showed: (1) how well PassGAN predicts
passwords when trained and tested on the same password distribution (i.e., when
using the RockYou dataset for both training and testing); and (2) whether Pass-
GAN generalizes across password datasets, i.e., how it performs when trained
on the RockYou dataset, and tested on the LinkedIn dataset.

4.2 PassGAN’s Output Space

To evaluate the size of the password space generated by PassGAN, we generated
several password sets of sizes between 104 and 1010. Our experiments show that,
as the number of passwords increased, so did the number of unique (and therefore
new) passwords generated. Results of this evaluation are reported in Table 1.

Table 1: Number of passwords generated by PassGAN that match passwords
in the RockYou testing set. Results are shown in terms of unique matches.

Passwords
Generated

Unique
Passwords

Passwords matched in testing
set, and not in training set
(1,978,367 unique samples)

104 9,738 103 (0.005%)

105 94,400 957 (0.048%)

106 855,972 7,543 (0.381%)

107 7,064,483 40,320 (2.038%)

108 52,815,412 133,061 (6.726%)

109 356,216,832 298,608 (15.094%)

1010 2,152,819,961 515,079 (26.036%)

2 · 1010 3,617,982,306 584,466 (29.543%)

3 · 1010 4,877,585,915 625,245 (31.604%)

4 · 1010 6,015,716,395 653,978 (33.056%)

5 · 1010 7,069,285,569 676,439 (34.192%)

When we increased the number of passwords generated by PassGAN, the
rate at which new unique passwords were generated decreased only slightly.
Similarly, the rate of increase of the number of matches (shown in Table 1)
diminished slightly as the number of passwords generated increased. This is to
be expected, as the simpler passwords are matched early on, and the remaining
(more complex) passwords require a substantially larger number of attempts in
order to be matched.

Impact of Training Process on Overfitting. Training a GAN is an iterative pro-
cess that consists of a large number of iterations. As the number of iterations
increases, the GAN learns more information from the distribution of the data.

10 Hitaj et al.

50
00

15
00
0

25
00
0

35
00
0

45
00
0

55
00
0

65
00
0

75
00
0

85
00
0

95
00
0

10
50
00

11
50
00

12
50
00

13
50
00

14
50
00

15
50
00

16
50
00

17
50
00

18
50
00

19
50
00

19
90
00

Checkpoint number

0

20000

40000

60000

80000

100000

120000

140000

N
um

be
r o

f p
as
sw

or
ds
 m

at
ch
ed

Fig. 1: Number of unique passwords generated by PassGAN on various check-
points, matching the RockYou testing set. The x axis represents the number of
iterations (checkpoints) of PassGAN’s training process. For each checkpoint, we
sampled 108 passwords from PassGAN.

However, increasing the number of steps also increases the probability of over-
fitting [18,69].

To evaluate this tradeoff on password data, we stored intermediate training
checkpoints and generated 108 passwords at each checkpoint. Figure 1 shows how
many of these passwords match with the content of the RockYou testing set. In
general, the number of matches increases with the number of iterations. This
increase tapers off around 125,000-135,000 iterations, and then again around
190,000-195,000 iterations, where we stopped training the GAN. This indicates
that further increasing the number of iterations will likely lead to overfitting,
thus reducing the ability of the GAN to generate a wide variety of highly likely
passwords. Therefore, we consider this range of iterations adequate for the Rock-
You training set.

4.3 Evaluating the Passwords Generated by PassGAN

To evaluate the quality of the output of PassGAN, we generated 5 · 1010 pass-
words, out of which roughly 7 · 109 were unique. We compared these passwords
with the outputs of length 10 characters or less from HashCat Best64, HashCat
gen2, JTR SpiderLab, FLA, PCFG, and Markov model, see Section 3.1 for the
configuration and sampling procedures followed for each of these tools.

In our comparisons, we aimed at establishing whether PassGAN was able to
meet the performance of the other tools, despite its lack of any a-priori knowledge
on password structures. This is because we are primarily interested in determin-
ing whether the properties that PassGAN autonomously extracts from a list of
passwords can represent enough information to compete with state-of-the-art
human-generated rules and Markovian password generation processes.

PassGAN: A Deep Learning Approach for Password Guessing 11

Table 2: Number of matches generated by each password guessing tool against
the RockYou testing set, and corresponding number of password generated by
PassGAN to outperform each tool. Matches for HashCat Best64 and FLA were
obtained by exhaustively enumerating the entire output of each tool. The mini-
mum probability threshold for FLA was set to p = 10−10.

Approach
(1) Unique
Passwords

(2) Matches
(3) Number of passwords
required for PassGAN

to outperform (2)

(4) PassGAN
Matches

JTR
Spyderlab

109 461,395 (23.32%) 1.4 · 109 461,398 (23.32%)

Markov Model
3-gram

4.9 · 108 532,961 (26.93%) 2.47 · 109 532,962 (26.93%)

HashCat
gen2

109 597,899 (30.22%) 4.8 · 109 625,245 (31.60%)

HashCat
Best64

3.6 · 108 630,068 (31.84%) 5.06 · 109 630,335 (31.86%)

PCFG 109 486,416 (24.59%) 2.1 · 109 511,453 (25.85%)
FLA

p = 10−10 7.4 · 108 652,585 (32.99%) 6 · 109 653,978 (33.06%)

Our results show that, for each of the tools, PassGAN was able to generate
at least the same number of matches. Additionally, to achieve this result, Pass-
GAN needed to generate a number of passwords that was within one order of
magnitude of each of the other tools. This holds for both the RockYou and the
LinkedIn testing sets. This is not unexpected, because while other tools rely on
prior knowledge on passwords for guessing, PassGAN does not. Table 2 summa-
rizes our findings for the RockYou testing set, while Table 3 shows our results
for the LinkedIn test set.

Our results also show that PassGAN has an advantage with respect to rule-
based password matching when guessing passwords from a dataset different from
the one it was trained on. In particular, PassGAN was able to match more
passwords than HashCat within a smaller number of attempts (2.1·109 – 3.6·109

for LinkedIn, compared to 4.8 · 109 – 5.06 · 109 for RockYou).

4.4 Combining PassGAN with HashCat

To maximize the number of passwords guessed, the adversary would typically
use the output of multiple tools in order to combine the benefits of rule-based
tools (e.g., fast password generation) and ML-based tools (e.g., generation of a
large number of guesses).

To evaluate PassGAN in this setting, we removed all passwords matched by
HashCat Best64 (the best performing set of rules in our experiments) from the
RockYou and LinkedIn testing sets. This led to two new test sets, containing
1,348,300 (RockYou) and 33,394,178 (LinkedIn) passwords, respectively.

Our results show that the number of matches steadily increases with the
number of samples produced by PassGAN. In particular, when we used 7 · 109

passwords from PassGAN, we were able to match 51% (320,365) of passwords
from the “new” RockYou dataset, and 73% (5,262,427) additional passwords

12 Hitaj et al.

Table 3: Number of matches generated by each password guessing tool against
the LinkedIn testing set, and corresponding number of password generated by
PassGAN to outperform each tool. Matches for HashCat Best64 and FLA were
obtained by exhaustively enumerating the entire output of each tool. The mini-
mum probability threshold for FLA was set to p = 10−10.

Approach
(1) Unique
Passwords

(2) Matches
(3) Number of passwords
required for PassGAN

to outperform (2)

(4) PassGAN
Matches

JTR
Spyderlab

109 6,840,797 (16.85%) 2.7 · 109 6,841,217 (16.85%)

Markov Model
3-gram

4.9 · 108 5,829,786 (14.36%) 1.6 · 109 5,829,916 (14.36%)

HashCat
gen2

109 6,308,515 (15.54%) 2.1 · 109 6,309,799 (15.54%)

HashCat
Best64

3.6 · 108 7,174,990 (17.67%) 3.6 · 109 7,419,248 (18.27%)

PCFG 109 7,288,553 (17.95%) 3.6 · 109 7,419,248 (18.27%)
FLA

p = 10−10 7.4 · 108 8,290,173 (20.42%) 6 · 109 8,519,060 (21.00%)

from the “new” LinkedIn dataset. This confirms that combining rules with ma-
chine learning password guessing is an effective strategy. Moreover, it confirms
that PassGAN can capture portions of the password space not covered by rule-
based approaches. With this in mind, a recent version of HashCat [23] introduced
a generic password candidate interface called “slow candidates”, enabling the use
of tools such as PCFGs [68], OMEN [14], PassGAN, and more with HashCat.

4.5 Comparing PassGAN with FLA

In this section, we concentrate on comparing PassGAN with FLA having a par-
ticular focus on the probability estimation. FLA is based on recurrent neural net-
works [19,64], and typically the model is trained on password leaks from several
websites, in our case the RockYou training set. During password generation, the
neural network generates one password character at a time. Each new character
(including a special end-of-password character) is computed based on its prob-
ability, given the current output state, in what is essentially a Markov process.
Given a trained FLA model, FLA outputs the following six fields: 1. password,
2. the probability of that password, 3. the estimated output guess number, i.e.,
the strength of that password, 4. the standard deviation of the randomized trial
for this password (in units of the number of guesses), 5. the number of measure-
ments for this password and 6. the estimated confidence interval for the guess
number (in units of the number of guesses). The evaluation presented in [38]
shows that their technique outperforms Markov models, PCFGs and password
composition rules commonly used with JTR and HashCat, when testing a large
number of password guesses (in the 1010 to 1025 range).

We believe that one of the limitations of FLA resides precisely in the Marko-
vian nature of the process used to estimate passwords. For instance, 123456;
12345; and, 123456789 are the three most common passwords in the RockYou

PassGAN: A Deep Learning Approach for Password Guessing 13

dataset, being roughly one every 66-passwords. Similarly, the most common pass-
words produced by FLA start with “123” or use the word “love”. In contrast,
PassGAN’s most commonly generated passwords, tend to show more variability
with samples composed of names, the combination of names and numbers, and
more. When compared with the RockYou training set, the most likely samples
from PassGAN exhibit closer resemblance to the training set and its probabilities
than FLA does. We argue that due to the Markovian structure of the password
generation process in FLA, any password characteristic that is not captured
within the scope of an n−gram, might not be encoded by FLA. For instance, if a
meaningful subset of 10-character passwords is constructed as the concatenation
of two words (e.g., MusicMusic), any Markov process with n ≤ 5 will not be
able to capture this behavior properly. On the other hand, given enough exam-
ples, the neural network used in PassGAN will be able to learn this property.
As a result, while password pookypooky was assigned a probability p ≈ 10−33

by FLA (with an estimated number of guessing attempts of about 1029), it was
guessed after roughly 108 attempts by PassGAN.

To investigate further on the differences between PassGAN and FLA, we
computed the number of passwords in the RockYou testing set for which FLA re-
quired at least 1010 attempts and that PassGAN was able to guess within its
first 7 · 109 samples. These are the passwords to which FLA assigns low proba-
bilities, despite being chosen by some users. Because PassGAN can model them,
we conclude that the probabilities assigned by FLA to these passwords are in-
correct. Figure 2 presents our result as the ratio between the passwords matched
by FLA at a particular number of guessing attempts, and by PassGAN within
its first 7 ·109 attempts. Our results show that PassGAN can model a number of
passwords more correctly than FLA. However, this advantage decreased as the
number of attempts required for FLA to guess a password increased, i.e., as the
estimated probability of that password decreased. This shows that, in general,
the two tools agree on assigning probabilities to passwords.

1010 1011 1012 1013 1014

Number of guessing attempts

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

Lo
w
 p
ro
b.
 p
as
sw

or
ds
 g
ue
ss
ed
 b
y
Pa

ss
G
A
N

Fig. 2: Percentage of passwords matched by FLA at a particular number of
guesses, that are matched by PassGAN in at most 7 · 109 attempts.

14 Hitaj et al.

Table 4: Sample of passwords generated by PassGAN that did not match the
testing sets.

love42743 ilovey2b93 paolo9630 italyit

sadgross usa2598 s13trumpy trumpart3

ttybaby5 dark1106 vamperiosa ~dracula

saddracula luvengland albania. bananabake

paleyoung @crepess emily1015 enemy20

goku476 coolarse18 iscoolin serious003

nyc1234 thepotus12 greatrun babybad528

santazone apple8487 1loveyoung bitchin706

toshibaod tweet1997b 103tears 1holys01

4.6 A Closer Look at Non-matched Passwords

We inspected a list of passwords generated by PassGAN that did not match any
of the testing sets and determined that many of these passwords are reasonable
candidates for human-generated passwords. As such, we speculate that a possibly
large number of passwords generated by PassGAN, that did not match our test
sets, might still match user accounts from services other than RockYou and
LinkedIn. We list a small sample of these passwords in Table 4.

5 Remarks

In this section, we summarize the findings from our experiments, and discuss
their relevance in the context of password guessing.

Character-level GANs are well suited for generating password guesses. In our
experiments, PassGAN was able to match 34.2% of the passwords in a testing
set extracted from the RockYou password dataset, when trained on a different
subset of RockYou. Further, we were able to match 21.9% of the password in
the LinkedIn dataset when PassGAN was trained on the RockYou password set.
This is remarkable because PassGAN was able to achieve these results with no
additional information on the passwords that are present only in the testing
dataset. In other words, PassGAN was able to correctly guess a large number
of passwords that it did not observe given access to nothing more than a set of
samples.

Current rule-based password guessing is very efficient but limited. In our ex-
periments, rule-based systems were able to match or outperform other password
guessing tools when the number of allowed guesses was small. This is a tes-
tament to the ability of skilled security experts to encode rules that generate
correct matches with high probability. However, our experiments also confirmed
that the main downside of rule-based password guessing is that rules can gener-
ate only a finite, relatively small set of passwords. In contrast, PassGAN was able
to eventually surpass the number of matches achieved using password generation
rules.

PassGAN: A Deep Learning Approach for Password Guessing 15

As a result, the best password guessing strategy is to use multiple tools. In
our experiments, each password guessing approach has an edge in a different
setting. Our results confirm that combining multiple techniques leads to the best
overall performance. For instance, by combining the output of PassGAN with
the output of the Best64 rules, we were able to match 48% of the passwords in
the RockYou testing dataset (which represents a 50.8% increase in the number
of matches) and 30.6% of the passwords from the LinkedIn dataset—an increase
of about 73.3%. Given the current performance of both PassGAN and FLA, it
is not unlikely that tools alone will soon be able to replace rule-based password
guessing tools entirely.

GANs are expressive enough to generate passwords from Markovian pro-
cesses, rules, and to capture more general password structures. Our experiments
show that PassGAN is competitive with FLA, which treats password guessing
primarily as a Markovian process. Without any knowledge of password rules or
guidance on password structure, PassGAN was able to match the performance
of FLA within an order of magnitude of guesses by leveraging only knowledge
that it was able to extract from a limited number of samples. Further, because
GANs are more general tools than Markov models, in our experiment PassGAN
was able to generate matching passwords that were ranked as very unlikely by
FLA, using a limited number of guesses.

GANs generalize well to password datasets other than their training dataset.
When we evaluated PassGAN on a dataset (LinkedIn [35]) distinct from its
training set (RockYou [57]), the drop in matching rate was modest, especially
compared to other tools. Moreover, when tested on LinkedIn, PassGAN was able
to match the other tools within a lower or equal number of guesses compared to
RockYou.

State-of-the-art GANs density estimation is correct only for a subset of the
space they generate. Our experiments show that IWGAN’s density estimation
matches the training set for high-frequency passwords. This is important because
it allows PassGAN to generate highly-likely candidate passwords early. However,
our experiments also show that as the frequency of a password decreases, the
quality of PassGAN’s density estimation deteriorates. While this becomes less
relevant as PassGAN generates more passwords, it shows that the number of
passwords that PassGAN needs to output to achieve a particular number of
matches could significantly decrease if it is instantiated using a character-level
GAN that performs more accurate density estimation. Similarly, a more exten-
sive training dataset, coupled with a more complex neural network structure,
could improve density estimation (and therefore PassGAN’s performance) sig-
nificantly.

Final Remarks. GANs estimate the density distribution of the training dataset.
As a result, PassGAN outputs repeated password guesses. While a full brute-
force guessing attack would have full coverage, learning from the training data
distribution allows PassGAN to perform a more efficient attack by generating
highly likely guesses. Because password generation can be performed offline,
PassGAN could produce several billions of guesses beforehand, and store them

16 Hitaj et al.

in a database. In our experiments, we stored unique password samples, and later
used these samples for testing purposes, thus avoiding repetitions. If needed,
Bloom filters with appropriate parameters could also be used to discard repeated
entries, thus enabling efficient online password guessing.

Clearly, PassGAN can be used in a distributed setting, in which several in-
stances independently output password guesses. While it is possible to avoid
local repetitions using, e.g., Bloom filters, coordinating the removal of dupli-
cates among different nodes is more complex and, potentially, more expensive.
The appropriate way to address this problem depends primarily on three factors:
(1) the cost of generating a password guess; (2) the cost of testing a password
guess; and (3) the cost of synchronizing information about previously-generated
password between nodes.

If the cost of generating passwords is less than the cost of testing them, and
synchronization among nodes is not free, then avoiding repetitions across nodes
is not essential. Therefore each model can sample without the need of being
aware of other models’ generated samples.

If the cost of testing password guesses is less than the cost of generating
them, then it might be beneficial to periodically coordinate among nodes to
determine which samples have been generated. The synchronization cost dictates
the frequency of coordination.

Finally, PassGAN could significantly benefit and improve from new leaked
password datasets. The model would improve by learning new rules, and the
number of repeated samples could potentially be reduced.

6 Conclusion

In this paper, we introduced PassGAN, the first password guessing technique
based on generative adversarial networks (GANs). PassGAN is designed to learn
password distribution information from password leaks. As a result, unlike cur-
rent password guessing tools, PassGAN does not rely on any additional informa-
tion, such as explicit rules, or assumptions on the Markovian structure of user-
chosen passwords. We believe that our approach to password guessing is revolu-
tionary because PassGAN generates passwords with no user intervention—thus
requiring no domain knowledge on passwords, nor manual analysis of password
database leaks.

We evaluated PassGAN’s performance by testing how well it can guess pass-
words that it was not trained on, and how the distribution of PassGAN’s output
approximates the distribution of real password leaks. Our results show that
PassGAN is competitive with state-of-the-art password generation tools: in our
experiments, PassGAN was always able to generate the same number of matches
as the other password guessing tools.

However, PassGAN currently requires to output a larger number of passwords
compared to other tools. We believe that this cost is negligible when considering
the benefits of the proposed technique. Further, training PassGAN on a larger
dataset enables the use of more complex neural network structures, and more

PassGAN: A Deep Learning Approach for Password Guessing 17

comprehensive training. As a result, the underlying GAN can perform more
accurate density estimation, thus reducing the number of passwords needed to
achieve a specific number of matches.

Changing the generative model behind PassGAN to a conditional GAN might
improve password guessing in all scenarios in which the adversary knows a set of
keywords commonly used by the user (e.g., the names of user’s pets and family
members). Given this knowledge, the adversary could condition the GAN to
these particular words, thus enabling the generator to give special attention to
a specific portion of the search space where these keywords reside.

PassGAN can potentially be used in the context of generating Honeywords [28].
Honeywords are decoy passwords that, when mixed with real passwords, sub-
stantially reduce the value of a password database for the adversary. Wang et al.
[65], raised concerns about the previous techniques proposed by Juels et al. [28]
to generate Honeywords: if Honeywords can be easily distinguished from real
passwords, then their usefulness is significantly reduced. An extension of Pass-
GAN could potentially address this problem and will be the subject of future
work.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine
learning. In: OSDI. vol. 16, pp. 265–283 (2016)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. CoRR abs/1701.07875
(2017), http://arxiv.org/abs/1701.07875

3. Berthelot, D., Schumm, T., Metz, L.: BEGAN: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

4. Binkowski, M., Sutherland, D., Arbel, M., Gretton, A.: Demystifying MMD GANs.
International Conference on Learning Representations (ICLR) (2018)

5. Cao, Y., Ding, G.W., Lui, Y.C., Huang, R.: Improving GAN training via binarized
representation entropy (BRE) regularization. International Conference on Learning
Representations (ICLR) (2018)

6. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
markov models. In: NDSS (2012)

7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan:
Interpretable representation learning by information maximizing generative adver-
sarial nets. In: Advances in Neural Information Processing Systems. pp. 2172–2180
(2016)

8. Ciaramella, A., D’Arco, P., De Santis, A., Galdi, C., Tagliaferri, R.: Neural network
techniques for proactive password checking. IEEE Transactions on Dependable and
Secure Computing 3(4), 327–339 (2006)

9. Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training GANs with optimism.
International Conference on Learning Representations (ICLR) (2018)

10. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: An empirical anal-
ysis. In: Proceedings IEEE INFOCOM. pp. 1–9. IEEE (2010)

11. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a laplacian pyramid of adversarial networks. In: Advances in neural information
processing systems. pp. 1486–1494 (2015)

http://arxiv.org/abs/1701.07875

18 Hitaj et al.

12. Dorsey, B.: Markov-chain password generator. https://github.com/

brannondorsey/markov-passwords (2017)
13. Duc, B., Fischer, S., Bigun, J.: Face authentication with gabor information on

deformable graphs. IEEE Transactions on Image Processing 8(4), 504–516 (1999)
14. Dürmuth, M., Angelstorf, F., Castelluccia, C., Perito, D., Abdelberi, C.: OMEN:

Faster password guessing using an ordered markov enumerator. In: ESSoS. pp.
119–132. Springer (2015)

15. Fiegerman, S.: Yahoo says 500 million accounts stolen (2017), http://money.cnn.
com/2016/09/22/technology/yahoo-data-breach/index.html

16. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: On the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE transactions on information forensics and security 8(1), 136–148
(2013)

17. Golla, M.: Password guessing using recurrent neural networks - the
missing manual. https://www.password-guessing.org/blog/post/

cupslab-neural-network-cracking-manual/ (2017)
18. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

19. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

20. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems. pp. 5767–5777 (2017)

21. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein GANs - code. https://github.com/igul222/improved_

wgan_training (2017)
22. HashCat: https://hashcat.net (2017)
23. HashCat: HashCat v5.0.0, advanced password recovery (2018), https://hashcat.

net/forum/showthread.php?mode=linear&tid=7903&pid=42585

24. Hitaj, B., Gasti, P., Ateniese, G., Pérez-Cruz, F.: PassGAN: A deep learning ap-
proach for password guessing. In: NeurIPS 2018 Workshop on Security in Machine
Learning. SECML’18, Montreal, CANADA (co-located with NeurIPS 2018) (2018)

25. Hjelm, R.D., Jacob, A.P., Trischler, A., Che, T., Cho, K., Bengio, Y.: Bound-
ary seeking GANs. International Conference on Learning Representations (ICLR)
(2018)

26. Hoang, Q., Nguyen, T.D., Le, T., Phung, D.: MGAN: Training generative adver-
sarial nets with multiple generators. International Conference on Learning Repre-
sentations (ICLR) (2018)

27. Hunt, T.: Here’s why [insert thing here] is not a password killer. https://www.
troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/

(2018)
28. Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In: Pro-

ceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. pp. 145–160. ACM (2013)

29. Kim, T., Cha, M., Kim, H., Lee, J., Kim, J.: Learning to discover cross-domain
relations with generative adversarial networks. arXiv preprint arXiv:1703.05192
(2017)

30. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://github.com/brannondorsey/markov-passwords
https://github.com/brannondorsey/markov-passwords
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/index.html
https://www.password-guessing.org/blog/post/cupslab-neural-network-cracking-manual/
https://www.password-guessing.org/blog/post/cupslab-neural-network-cracking-manual/
https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
https://hashcat.net
https://hashcat.net/forum/showthread.php?mode=linear&tid=7903&pid=42585
https://hashcat.net/forum/showthread.php?mode=linear&tid=7903&pid=42585
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/
https://www.troyhunt.com/heres-why-insert-thing-here-is-not-a-password-killer/

PassGAN: A Deep Learning Approach for Password Guessing 19

31. Lab, C.: Fast, lean, and accurate: Modeling password guessability using neural net-
works (source code). https://github.com/cupslab/neural_network_cracking

(2016)
32. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,

Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

33. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard,
W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation net-
work. In: Advances in neural information processing systems. pp. 396–404 (1990)

34. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: Inter-
national Conference on Machine Learning. pp. 1718–1727 (2015)

35. LinkedIn: Linkedin, https://hashes.org/public.php
36. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:

IEEE Symposium on Security and Privacy (SP). pp. 689–704. IEEE (2014)
37. position Markov Chains, H.P.: https://www.trustwave.com/Resources/

SpiderLabs-Blog/Hashcat-Per-Position-Markov-Chains/ (2017)
38. Melicher, W., Ur, B., Segreti, S.M., Komanduri, S., Bauer, L., Christin, N., Cra-

nor, L.F.: Fast, lean, and accurate: Modeling password guessability using neural
networks. In: USENIX Security Symposium. pp. 175–191 (2016)

39. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

40. Miyato, T., Koyama, M.: cGANs with projection discriminator. International Con-
ference on Learning Representations (ICLR) (2018)

41. Morris, R., Thompson, K.: Password security: A case history. Communications of
the ACM 22(11), 594–597 (1979)

42. Mroueh, Y., Li, C.L., Sercu, T., Raj, A., Cheng, Y.: Sobolev GAN. International
Conference on Learning Representations (ICLR) (2018)

43. Mroueh, Y., Sercu, T., Goel, V.: Mcgan: Mean and covariance feature matching
GAN. In: Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. pp. 2527–2535 (2017),
http://proceedings.mlr.press/v70/mroueh17a.html

44. Murphy, K.P.: Handbook of Information Security, Information Warfare, Social,
Legal, and International Issues and Security Foundations. John Wiley & Sons
(2006)

45. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)
46. Nagarajan, V., Kolter, J.Z.: Gradient descent GAN optimization is locally stable.

In: Advances in Neural Information Processing Systems. pp. 5585–5595 (2017)
47. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-

space tradeoff. In: Proceedings of the 12th ACM conference on Computer and
communications security. pp. 364–372. ACM (2005)

48. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: Training generative neural samplers
using variational divergence minimization. In: Advances in Neural Information
Processing Systems. pp. 271–279 (2016)

49. Percival, C., Josefsson, S.: The scrypt password-based key derivation function.
Tech. rep. (2016)

50. Perez, S.: Google plans to bring password-free logins to android
apps by year-end (2017), https://techcrunch.com/2016/05/23/

google-plans-to-bring-password-free-logins-to-android-apps-by-year-end/

51. Petzka, H., Fischer, A., Lukovnikov, D.: On the regularization of wasserstein GANs.
International Conference on Learning Representations (ICLR) (2018)

https://github.com/cupslab/neural_network_cracking
https://hashes.org/public.php
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hashcat-Per-Position-Markov-Chains/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hashcat-Per-Position-Markov-Chains/
http://proceedings.mlr.press/v70/mroueh17a.html
https://techcrunch.com/2016/05/23/google-plans-to-bring-password-free-logins-to-android-apps-by-year-end/
https://techcrunch.com/2016/05/23/google-plans-to-bring-password-free-logins-to-android-apps-by-year-end/

20 Hitaj et al.

52. Project, T.P.: http://thepasswordproject.com/leaked_password_lists_and_

dictionaries (2017)
53. Provos, N., Mazieres, D.: Bcrypt algorithm. In: USENIX (1999)
54. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep

convolutional generative adversarial networks. In: 4th International Conference on
Learning Representations (2016)

55. the Ripper, J.: http://www.openwall.com/john/ (2017)
56. the Ripper Markov Generator, J.: http://openwall.info/wiki/john/markov

(2017)
57. RockYou: Rockyou. http://downloads.skullsecurity.org/passwords/

rockyou.txt.bz2 (2010)
58. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative

adversarial networks through regularization. In: Advances in Neural Information
Processing Systems. pp. 2018–2028 (2017)

59. Rules, H.: https://github.com/hashcat/hashcat/tree/master/rules (2017)
60. Rules, J.T.R.K.: http://contest-2010.korelogic.com/rules.html (2017)
61. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-

propagating errors. nature 323(6088), 533 (1986)
62. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Im-

proved techniques for training gans. In: Advances in Neural Information Processing
Systems. pp. 2234–2242 (2016)

63. Sitová, Z., Šeděnka, J., Yang, Q., Peng, G., Zhou, G., Gasti, P., Balagani, K.S.:
HMOG: New behavioral biometric features for continuous authentication of smart-
phone users. IEEE Transactions on Information Forensics and Security 11(5), 877–
892 (2016)

64. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). pp. 1017–1024 (2011)

65. Wang, D., Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of honey-
words. NDSS (2018)

66. Wei, X., Gong, B., Liu, Z., Lu, W., Wang, L.: Improving the improved training of
wasserstein GANs: A consistency term and its dual effect. International Conference
on Learning Representations (ICLR) (2018)

67. Weir, M.: Probabilistic password cracker. https://sites.google.com/site/

reusablesec/Home/password-cracking-tools/probablistic_cracker (2009)
68. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using

probabilistic context-free grammars. In: 30th IEEE Symposium on Security and
Privacy. pp. 391–405. IEEE (2009)

69. Wu, Y., Burda, Y., Salakhutdinov, R., Grosse, R.: On the quantitative analysis of
decoder-based generative models. arXiv preprint arXiv:1611.04273 (2016)

70. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. arXiv preprint arXiv:1612.03242 (2016)

71. Zhong, Y., Deng, Y., Jain, A.K.: Keystroke dynamics for user authentication. In:
Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Com-
puter Society Conference on. pp. 117–123. IEEE (2012)

72. Zhou, Z., Cai, H., Rong, S., Song, Y., Ren, K., Zhang, W., Wang, J., Yu, Y.:
Activation maximization generative adversarial nets. International Conference on
Learning Representations (ICLR) (2018)

http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://thepasswordproject.com/leaked_password_lists_and_dictionaries
http://www.openwall.com/john/
http://openwall.info/wiki/john/markov
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://github.com/hashcat/hashcat/tree/master/rules
http://contest-2010.korelogic.com/rules.html
https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker
https://sites.google.com/site/reusablesec/Home/password-cracking-tools/probablistic_cracker

	PassGAN: A Deep Learning Approach for Password Guessing

