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Abstract—The anticipated proliferation of smart devices,
the “Internet of Things” (IoT), is one of the motivations for
some large-scale research efforts aiming to design a new In-
ternet architecture. One such effort is Named-Data Networking
(NDN) – a “future internet architecture” research project in
the Information-Centric Networking (ICN) area that emphasizes
efficient, scalable and secure data distribution through a shift
from the host-based addressing of IP to data-centric addressing.
Because of its focus on data distribution, NDN has been assumed
to be poorly suited for other networking scenarios.

We address efficient and secure sensing over NDN, motivated
by the convergence of the IoT vision with traditional Building Au-
tomation Systems (BAS). We consider several sensing paradigms
and demonstrate the use of NDN to securely interact with NDN-
enabled sensors. In the process, we address some challenges
caused by sensors’ intermittent availability, power constraints
and asynchronous communication patterns. Our results include
concrete protocols that facilitate secure sensor-bound communi-
cation over NDN.

I. INTRODUCTION

Today’s Internet was designed as a means of commu-
nication between two remote hosts. This was envisioned in
1970-s and early 1980-s as the predominant paradigm for
resource sharing. Today, common Internet usage scenarios
have changed significantly and include: large-scale content
distribution, delay-tolerant networking, swarms of wireless
devices producing and consuming data as well as mobile
computing. Although all these “new” scenarios are addressed
to some extent at different layers in the current Internet (e.g.,
via CDNs, 802.x, DHCP, mDNS), there are several large
research efforts that aim to construct and demonstrate new
Internet architectures that would better address the needs of
modern Internet applications.

Named-Data Networking (NDN) [30] is one such effort.
NDN is part of a field typically called Information-Centric Net-
working (ICN) [18], [26] – consisting of networking paradigms
designed for efficient data distribution [22]. Related prominent
efforts are PARC’s Content-Centric Networking (CCN), whose
open source software CCNx is used as a reference implemen-
tation for the work described below. In NDN, named data –
rather than a named host or an interface address – is a first-class
entity. Data is directly addressable, regardless on what host
distributes it, and is returned in response to explicit requests
from consumers, and is never sent unsolicited, i.e., NDN is a
“pull” architecture.

NDN also stipulates that each piece of data must be signed
by its producer. This allows decoupling of trust in data from

trust in the entity that stores and/or disseminates that data.
This NDN feature fosters automatic caching of data in order
to optimize bandwidth use and enable effective simultaneous
utilization of multiple network interfaces.

NDN’s long-term goal is to replace the current TCP/IP-
based Internet architecture [12]. In order to succeed, it must
be shown that NDN can support all major types of commu-
nication performed today and envisaged for the near future.
Recent work focused on implementing telephony [21], video
conferencing [40], smart meters [24], and control systems [4],
[34] over NDN.

This paper provides further evidence of NDN’s suitability
for communication other than data distribution. Specifically,
we explore the use of NDN for secure sensing applications.

Sensors play a central role in the Internet of Things
(IoT) [8]. Smart objects, which represent the building blocks
of IoT, provide a bridge between physical (analog) and digital
(cyber) worlds, through sensing. The use of sensors in IoT
research builds on research of the embedded and wireless
sensing community [2] and more recent efforts in sensing using
general purpose mobile devices [5].

Related research in sensing and control by the NDN team,
which motivates the work described here, has focused on the
context of building automation systems (BAS). BAS are a tra-
ditional application of industrial control systems to managing
the various systems of buildings, including heating, ventilation
and air conditioning (HVAC), electrical distribution, water
monitoring, fire detection and suppression, intrusion detection,
and access control. The IP protocol suite is increasingly used
to network their components and as such is now a fundamental
substrate of new buildings [17]. However, IP networks suffer
from limitations that impact innovation and trust in networked
building systems, which we believe can be addressed with
NDN.

In both BAS and IoT scenarios, the main purpose of a
typical network-enabled sensor is to collect data and allow
other devices and applications to access it remotely. Such
sensors tend to be part of resource-constrained devices, for
example being either battery-operated or energy-limited for
sustainability reasons, with computing resources sufficient to
perform data gathering and reporting. In order to save power,
sensors can choose to sleep or hibernate whenever possible.
As such, our framework supports secure sensor data access in
energy-constrained environments.

In such cases where network communication should be



kept to a minimum, the pull nature of NDN communication
makes careful protocol design important. Applications must be
aware of the availability of new data in order to request it. This
is not a problem when data in generated at regular intervals
(e.g., daily at 8am). However, applications can not predict the
timing of arbitrary external events that trigger sensors to collect
new data. For example, a moisture sensor might be triggered
by rain or a temperature sensor – by frost.

Sensors are often used in critical environments, e.g., mon-
itoring buildings that are part of critical infrastructure. They
can also be used to collect highly sensitive information, e.g.,
utility smart meters and physical intrusion detection data.
Therefore, any general approach to secure sensing must offer
availability, integrity, origin authentication and access control
(data privacy). Also, due to sensors’ limited resources, a
common DoS attack vector is to attempt to overwhel the
target sensor(s) with malicious requests. Thus, DoS mitigation
is an important requirement All of the above, coupled with
scalability, represent a major challenge in the context of any
Internet architecture, including NDN.

BAS and other industrial control systems have in the
past typically employed physical or logical isolation of the
network as a primary security measure, and can likely do so
no longer [25]. Isolation limits interoperability and integration,
and runs counter to both the IoT vision and the reality of how
users desire to access data, interconnect heterogeneous com-
ponents, deliver system upgrades, and monitor performance.
Our approach to sensing security must necessarily be more
sophisticated.

Focus. This paper focuses on constructing a secure, efficient
and scalable sensing framework over NDN. Our framework
provides data integrity, flexible access control, efficient mul-
ticast communication and basic protection against denial-of-
service (DoS) attacks. We classify sensors along two dimen-
sions: data collection and data dissemination, i.e., based on
how they obtain and report data.

Data dissemination:

Pull: a sensor does not send out collected data. It
is always on-line, ready to accept queries from
remote entities.

Push: a sensor automatically disseminates collected data
by pushing it to a set of remote entities (sub-
scribers).

Data collection:

Triggered: a sensor collects data when triggered by some
external event, e.g., whenever smoke is detected.

Scheduled: a sensor collects data at based on some fixed
(though not necessarily regular) schedule, e.g., a
new temperature reading every minute.

On-demand: a sensor collects data following an explicit
request from an external entity.

We then focus on the design of a framework that allows
sensors to communicate via push and pull data dissemination,
regardless of how they perform data collection. We believe
that this is general enough to subsume a wide range of
sensor application settings. Also, our classification is not strict,

meaning that a sensor can operate in a hybrid fashion, e.g., a
sensor can support both triggered and scheduled collection and
implement both push and pull data dissemination modes. The
main reason for this classification is to identify main types of
sensor communication patterns, which is the first step towards
adapting NDN to the world of sensing.

Organization. The rest of this paper is structured as follows:
We proceed with an overview of related work in Section II.
Then, Section III introduces our security framework, which
provides foundation for the sensing protocols, presented in
Section IV. The paper concludes in Section V.

II. BACKGROUND AND RELATED WORK

A. NDN Overview

NDN is an example of ICN. Instead of traditional host-
centric networking, exemplified by IP (where the exchange of
data is a side-effect of conversation between communicating
hosts), data is a first-class object in NDN. Each data packet is
addressable by a unique name, which can be human readable
and globally routable, and is decoupled from the location of
its producer. Therefore, any piece of data can be served from
any network entity. Mandatory producer-generated digital sig-
natures on all data provide integrity and origin authentication.

NDN defines two types of packets: interest and data. The
latter contains (among other fields) a name, a payload, and
a public-key signature. Names are hierarchical, consisting of
one or more arbitrary-length components. A name is usually
represented as a sequence of components delimited using “/”,
e.g., /youtube/video/id/okqEVeNqBhc. A signature
is computed over the name, data, and accompanying signature
meta-data associating the signer’s public key. Applications are
responsible for managing trust bindings between public keys
and name-spaces.

Interest packets are used to fetch data by name. A data
packet with name X satisfies an interest with name X ′ if X =
X ′ or X ′ is a proper prefix of X (i.e., X = X ′/Y for some
non-empty string Y ).

Communication in NDN is receiver-driven. All requested
data must be preceded by a corresponding interest. A consumer
issues an interest for desired data. As the interest is forwarded
by each router, it is either satisfied (and consumed) by the
router’s cache, or propagated further upstream towards the
nearest place that stores that data. Data originates at a producer
which is responsible for publishing it under a namespace,
injecting it into the network upon receipt of an interest. Data
traverses the reverse path taken by the preceding interest.

Packet Forwarding. An NDN router forwards interests and
data packets, and caches forwarded data. Each router is ex-
pected to implement the following data structures: Forwarding
Information Base (FIB), Pending Interest Table (PIT), and
Content Store (CS).

FIB is the analog of IP’s forwarding table. It is popu-
lated with (name prefix , interface) entries, which correspond
to reachable paths for data produced under the namespace
name prefix. Interest lookups are performed using longest-
prefix match. Multiple entries for the same prefix are permitted,
allowing data to be retrieved from multiple distinct paths.



PIT is used to store information necessary to forward
data back to consumers. A PIT entry contains an interest
and one or more arrival interfaces for that interest. When
an interest is received by a router for the first time, a PIT
entry is created. Subsequent closely spaced interests with the
same name are aggregated, and the corresponding PIT entry
is updated to account for the additional arrival interfaces.
Identical interests are not propagated further. Data that satisfies
an interest consumes the corresponding PIT entry and is sent
out to all associated arrival interfaces.

CS is used to cache data. This offers several benefits:
efficient dissemination of data packets, and implicit multi-
casting for popular data, increasing bandwidth efficiency and
reducing latency for downstream consumers. Data packets
carry a freshness field, which tells routers when particular
packets should be flushed from CS.

Authenticated Interests. In contrast with data packets, NDN
interests are not authenticated. This is done for privacy and
performance reasons. However, NDN imposes virtually no
restrictions on the composition of name components. Previous
work [4], [10] took advantage of this freedom by embedding
binary data as the last name component of an interest. This
allows a consumer to efficiently “push” authenticated data
towards a producer.

Access Control. In NDN, access control is enforced via
encryption of data. Though NDN transparently supports en-
crypted data, it does not specify any particular access control
scheme. CCNx [7], a reference of NDN, provides a basic form
of access control, which mimics the file-system access control
model [35]. This is a poor match for sensing applications.

B. Sensing Overview

Our consideration of sensors draws from the Internet of
Things (IoT) research and embedded and wireless sensing
before it, as well as the field of Building Automation Systems
(BAS). We consider NDN-based building networks as a con-
tinuation of the convergence of traditional building automation
with IP networking and other enablers of the IoT vision. Build-
ing Automation Systems (BAS) have more concrete security
requirements than IoT in general, especially when they are
related to critical infrastructure.

Sensor data is usually communicated to other sensors,
applications or data collection nodes – known as a sinks.
In what follows, we consider sensors that for reasons of
energy conservation and/or cost have very low computing
power and significant energy limitations. Research in wireless
sensor networks (WSN) is broad and extensive, covering
application case studies [2], [29], [39], energy efficient link-
layer protocols [2], [23], [27], [39], routing protocols [1], [3],
key establishment [6], [28], [11], etc. Relevant to our work, we
present an overview of network layer transport for networks
similar to WSN assuming homogeneous device and discuss
security measures used for WSN.

The IPv6 over Low power Wireless Personal Area Net-
works (6LoWPAN) architecture is an attempt to bring IPv6
to low-powered devices such as sensor networks, specifically
tuned for devices implementing IEEE 802.15.4 as the basis

of numerous low-powered link-layer wireless protocols such
as ZigBee, MiWi, etc. Security of 6LoWPAN is relegated to
the link-layer protocols. While IEEE 802.15.4 provides link-
layer authenticated encryption (such as AES-CTR), several
shortcomings have been pointed out in a comprehensive se-
curity analysis in [33]. While at the MAC-layer access control
is supported, it is statically assigned by the application and
limited to 255 entries.

Estrin et al. [20] introduced Directed Diffusion (DD), the
first data-centric approach to sensor networks. DD bears a
strong resemblance to NDN in that DD sensor nodes pro-
duce location-independent data addressed using names (in this
case attribute-value pairs). DD reinforces desired paths using
interest-data flow balance feedback, however provides limited
resilience towards availability attacks, specifically when the
adversary drops interest packets. This however does not assist
in interest-flooding attacks or false data injection. The authors
of [37] propose a secure diffusion mechanism. It ensures
connectivity to authentic sensors while limiting malicious data
injection within a local neighborhood. It is based on TESLA
[31] broadcast authentication on interests. Nodes endorse
sensor data using MAC. The scheme dovetails DD’s path
reinforcement to ensure paths are selected with known good
data, limiting the propagation of malicious/unauthentic data.

Heinzelman et al. [19] propose LEACH (Low-Energy
Adaptive Clustering Hierarchy), a clustering-based routing pro-
tocol for WSNs that evenly distribute load among all sensors
in a network. LEACH provides scalability and robustness via
localized coordination. Xiao-yun et al. [38] introduce a secure
extension to LEACH, called SLEACH, which uses lightweight
cryptography, such as hash chains, to provide authentication of
LEACH messages. However, the paper does not address access
control or data integrity.

In [32] Perrig et al. introduce SPINS, a suite of building
blocks for WSNs. Spins provide facilities for authentication
(broadcast and one-to-one), confidentiality and freshness. The
broadcast authentication protocol is based on TESLA [31].
Similarly to our work, confidentiality is obtained through
encryption. However, SPINS does not provide a framework
for flexible access control.

III. SECURE SENSING FRAMEWORK

In this paper, we take advantage of prior work that proposed
a security framework for lighting control over NDN [4].
Lighting control is specific case of building automation which,
in turn, is a representative example of actuation and control.
Since sensing and actuation are closely related, they naturally
share most security features – though there are some key
differences as well.

One obvious distinction is that a sensor, unlike an actuator,
does not usually affect the physical environment. Another
difference is that, in general, an actuator accepts a command,
executes it (e.g., by changing state) and returns its status.
Whereas, in either push or pull dissemination model, a sensor
reports (possibly large amounts of) data collected from the
environment. Finally, an actuator is generally controlled by
one or a few entities, e.g., a typical light fixture is controlled
by one or two switches. In contrast, a multitude of entities



might need to retrieve data from a single sensor. This imposes
a very different scalability requirement.

Our setting includes the following parties: a configuration
manager (CM), a set of sensors (Sen), multiple applications
(App), and an authorization manager (AM). CM is responsible
for initial configuration of Sen, which involves: (1) assigning
Sen an NDN namespace (nameSen), under which Sen will
publish its readings; (2) assigning an identity to Sen repre-
sented by a unique public/private key pair (pkSen, skSen); and
(3) installing AM’s public key (pkroot) on Sen. pkroot identifies
the root of trust shared by all sensors and applications within
the same domain.

Framework Components. Our sensing framework provides a
trust model, a syntax for finely granular access control policies,
and a set of protocols. The trust model associates keys (and
their owners) to namespaces, allowing parties to determine
whether data published under a namespace is signed by the
correct entity.

Similar to sensors, applications are identified by their
public/private key-pairs. When an application joins a domain
(i.e., it is allowed to query a subset of the sensors available in
that domain), AM signs the public keys for App and optionally
assigns it a namespace (nameApp). For each sensor Sen, AM
distributes a signed access control list containing the identities
and namespace of applications which are allowed to query
Sen. While CM and AM represent separate functionalities, in
practice can correspond to the same physical entity. Without
loss of generality, we assume that all data produced by sensors
is confidential. We therefore enforce access control on it.

To formalize our security goals, we consider an adversary
with full control over the communication channel between
App and Sen. We believe this is a realistic scenario, since
sensor data is often collected via wireless networks or other-
wise accessible channels. Additionally, the NDN architectural
vision promotes data-centric security over channel-centric se-
curity [36], so assuming an insecure channel is appropriate
even in wireline networks. The goals of the adversary include:
(1) forcing Sen to respond to unauthorized queries (including
old legitimate queries from App); (2) sending incorrect data to
App in response to a legitimate query; (3) sending illegitimate
acknowledgements (when available) to Sen, claiming receipt
of data; and (4) violating data privacy by gaining unauthorized
access to Sen’s readings.

A. Trust Model

The trust model ensures that entities only publish data to
their assigned namespace, or children namespaces. (nameA is
a child of nameB then the latter is a prefix of the former.)
This is done by associating one or more public keys with
each namespace. A data packet published under nameA must
be signed using the key associated to nameA or any of its
ancestors.

AM, acting as a trusted-third party (TTP), generates
a public/private key-pair Kroot = (pkroot, skroot) and
distributes pkroot. This key serves as the root of trust: valid
keys must be either signed using skroot, or another valid key.
To associate producer P (e.g., an application or a sensor)
with a namespace nameP , AM publishes public key pkP ,

under nameP/key. This can be seen as a simple public-key
certificate. P can further delegate its namespace, assigning a
child namespace nameP ′ = nameP/sub-namespace/ to
P ′ by publishing (and therefore signing) P ′’s public key under
nameP ′/key.

Proving ownership of nameP is trivial using a challenge-
response protocol. The challenger issues an interest for
nameP/nonce where nonce is a randomized string selected
by the challenger. P can respond with a valid data packet only
if it owns the signing key linked to nameP , any of its ances-
tors, or AM’s signing key. Furthermore, in this trust model, the
set of keys that can sign data belonging to namespace nameP
(or children namespaces) can be unambiguously determined,
i.e., contains all valid keys with prefix nameP and the root
key.

B. Key Attributes and Access Control Policies

The attributes of a public key are expressed as the name
under which the key is published. Attributes are name/value
pairs expressed as two consecutive name components: the
first indicates the attribute name followed by a component
containing its value. Following our trust model, the key is
signed by either the AM or the owner of the namespace.

The following lists a sample set of attributes which can be
used:

• domain: the application domain

• appname: the application identifier

• access: application permission to query a sensor

• expires: expiration date specified in generalized
time notation (YYYYMMDDHHMMSSZ)

For example, public key pkP can be published as:

/uci/ics/domain/smokealarm/appname/
campuswarning/access/full-access/

expires/20201231235959Z/key

C. Bootstrap and Pairing Protocol

New sensors must be paired with CM and bootstrapped
before they can accept commands from applications. Pairing
involves installing pkroot on Sen. During bootstrap, CM spec-
ifies a namespace for Sen and sets Sen’s clock. The public
key identifies the domain in which Sen operates. CM proceeds
to send the signing key to Sen. This key-pair links Sen to its
assigned namespace. CM may additionally communicate the
names for one or more ACLs which Sen can use to determine
applications’ permissions. Sen generates a symmetric key kSen,
which can be used to further derive application-specific sym-
metric keys. These keys are used for authentication purposes.
After Sen is setup, it responds to CM with the current time
and a hash of all information exchanged during the bootstrap.

D. Using Symmetric Cryptography for Higher Efficiency

So far we have only considered public-key cryptography
for encryption and authentication. Since we assume that might
have very limited computing power, public-key cryptography
may be too expensive. To reduce the cost of encryption and



authentication, we briefly illustrate how to use symmetric
cryptography between Sen and App.

As a first approach, Sen and App could simply share
a symmetric key. This key is used (directly or after being
transformed by a key derivation function) for authenticating
and encrypting messages between the two parties. To allow
simple revocation and meaningful authentication, Sen should
have a separate key for each App. However, if a large number
of applications interact with Sen, then the amount of key
material that Sen needs to store may be prohibitively large
– linear in the number of Apps. Instead of storing all keys,
Sen can compute them when needed using a pseudo-random
function (PRF), keyed with a secret key known only to Sen.
Key kApp – the symmetric key corresponding to App – is
computed as kApp = PRFkSen

(nameApp). This key must be
sent to App during its first interaction – possibly secured using
public-key cryptography – with Sen. The key can then be used
to derive encryption and authentication keys.

IV. SECURE SENSING MODALITIES

In this section we introduce the two modalities for data
dissemination: pull and push. Each modality represents a class
of sensors with different scope and capabilities. By addressing
them separately, we aim to design a set of protocols suitable
for a wide range of applications.

A. Pull Data Dissemination

Sensors implementing pull-based data dissemination are
assumed to be always on-line, and therefore can efficiently
employ the standard protocol for data dissemination in NDN:

1) App expresses an interest intSen for nameSen.
2) After receiving intSen, Sen performs the following

actions: (1) (possibly) senses the environment and
generates data; and (2) returns a (signed) data packet
CSen containing the data.

3) App receives CSen, verifies the signature, and uses
the data. Since the signature in CSen binds name
with data, App can verify that the data returned
corresponds to its most recent request.

Access control is enforced by Sen using data encryption.
In particular, data packets are encrypted by Sen using App’s
public key, which is certified (i.e., signed) by AM. (As an
alternative, Sen can encrypt data using App’s symmetric key,
as discussed in Section III-D.) Upon receipt of a data packet,
App decrypts it using its secret key. For efficiency reasons,
data is encrypted using hybrid encryption [14]: the data is first
encrypted using a symmetric encryption scheme (e.g., AES in
CBC mode) under a random key k; k is then encrypted under
the authorized recipient’s (public or symmetric) key. In case
multiple applications have access to the same sensor reading,
k is encrypted under all recipients’ keys:

Epk1
(k) Epk2

(k) Epk3
(k) Ek(m)

This allows the producer to encrypt the data only once,
and requires it to simply encrypt a (relatively small) key once
per recipient. The cost of this approach, both in terms of
computation and communication overhead, is reasonable when

the number of recipients is small (e.g., up to 20-30). If a large
number of recipients need access to the data, efficient broadcast
encryption (BE) [13], [15] can provide constant (instead of
linear) ciphertext expansion and encryption time.

Flexible Query Authentication. In dynamic environments,
multiple applications may be frequently added to the list of
parties authorized to query a particular set of sensors. In
this case, updating the ACL and corresponding application
public keys on all affected sensors may be cumbersome and
expensive. As an alternative, we introduce a flexible query
authentication mechanism that does not require any direct
communication between AM and the affected sensors.

Application App that owns a key distributed un-
der name nameApp/key, where nameApp is the names-
pace owned by App, issues an interest to Sen as:
“nameSen/nameApp/auth-token”.

The field auth-token encodes an authentication token,
constructed as: state || authenticator. The state
represents information required to prevent timing and replay
attacks. It is composed of a sequence number, timestamp, and
estimated round-trip time (RTT) between App and Sen. The
authenticator part is a signature or a MAC, computed
over nameSen/nameApp/state. App authenticates the query
using either an established symmetric key (to compute the
MAC) or public key associated with nameApp/key (to gener-
ate the public key signature).

When Sen receives the interest, it performs the following:

1) Sen verifies the state corresponding to App, deter-
mining if the interest is current. If it has no record of
previous queries from App, it extracts the sequence
number from auth- token and stores it as tuple
(nameApp, sequence number). Otherwise it checks
the stored sequence number for App is lower than the
one in auth-token.

2) Sen verifies the signature or MAC contained in
authenticator. If it is a signature and Sen has
not yet retrieved the public key, it retrieves it from
nameApp/key and stores it in a local cache.

3) Sen senses the environment, generates data, and en-
crypts it under the public key pkApp or a symmetric
encryption key derived using kApp. The data is en-
capsulated in a data packet under the same name as
the interest, and signed under pkSen or MAC-ed using
the output of a key derivation function over kApp.

If the pair (nameApp, sequence number) stored by Sen
is not updated for a pre-determined amount of time, it is
considered stale and deleted. This ensures Sen only retains
state for currently active applications.

Mitigating Denial-of-Service Attacks. The protocols intro-
duced in this section are designed for anemic sensors, which
can be accessed over the network by both trusted and untrusted
applications. A sufficient number of requests from a malicious
party could easily prevent legitimate applications from query-
ing the sensor and/or quickly deplete the sensor’s battery.

To prevent Sen from being overwhelmed with queries, the
cache of intervening routers can be used to handle closely



spaced interests, reducing the bandwidth and delay for re-
sponding to App. Sen can specify the optional Freshness
field in produced data packets to control the expiry timer of
data in cache. As an example, this value can be adjusted
according to the amount of time necessary to process queries.
Subsequent closely spaced interests from App will be satisfied
by the cache until Sen is able to issue new readings. On the
other hand, if Sen must perform separate sensing for each
query, the Freshness field in data packets can be set to 0,
so that intermediate routers immediately mark the data packets
as stale, and remove them from their cache.

This approach works only if applications request data from
the sensor using the same data name: as an example, if each ap-
plication includes a unique identifier within the interest name,
then subsequent requests carrying different identifiers cannot
be satisfied using the cache. Moreover, malicious requests can
be crafted in such a way that they can never be satisfied using
routers’ caches: as an example, the adversary can append a
random nonce at the end of the interest name.

As an alternatives, sensors may accept only interests au-
thenticated via MAC. This way, a sensor can determine if
a query is legitimate by performing a key derivation from
an application-provided string of bounded length, and single
operation based on (efficient) symmetric cryptography. Non-
legitimate interests will be immediately discarded, without
requiring any sensing, encryption or signature computation
over sensed data. While DoS attacks are not warded off in
their entirety by using authenticated interests, this ensures that
work is expended only if the source is permitted.

B. Push Data Dissemination

With push, Sen senses and generates data when triggered
by an asynchronous event. Asynchronous events are tightly
correlated with failure or important notification, and therefore
Sen must attempt to reliably send data to App. However
App retrieving data from Sen proves problematic. Recall that
NDN adheres to the “pull” paradigm, i.e., it mandates that
all communication is receiver-driven. Therefore App, as the
recipient of the data, must initiate communication to Sen in
order to receive its data.

One option is to use the above pull protocol, and have
App poll Sen by repeatedly issuing interests to nameSen at
repeated time intervals. When an event occurs, Sen awak-
ens, senses and returns data encapsulated in a data packet
satisfying any outstanding interests. However, between each
triggered event, resources are tied up in intervening routers
to store outstanding interests issued by App. App must also
expend significant resources in refreshing interests. Further-
more, App may incur large delay for receiving data from
Sen if it must poll many devices. Delay can occur when
Sen’s event occurs between poll intervals while App is con-
tinuing to poll other devices. The resultant delay is there-
fore proportional to the number of devices on the network.
For environments which must ensure timely delivery after
event occurrence, this may not be a suitable approach. Ide-
ally, Sen would notify App when new data is available,
prompting App to query Sen. However, NDN does not provide
explicit support notifications. Nevertheless, interests can be
used to implement such a mechanism.

Interest Notification. App listens to a distinct namespace
nameApp which is assigned by AM. The signed access control
list includes each namespace nameApp for the corresponding
identity pkApp. Each application listens for interests on their
corresponding namespace. Sen must have advanced knowledge
of which namespace has been assigned to each application, and
notifies each application separately. Sen reaps the benefits of
NDN implicit broadcast ability by generating and transmitting
content CSen once. We now describe the protocol in detail:

1) Sen (1) senses the environment; (2) generates data;
(3) enforces access control via data encryption; and
(4) generates a signed data packet CSen, embedding
the data with the name cname under the namespace
nameSen.

2) For each application: Sen issues interest intApp for
nameApp/[cname], where [cname] is an opaque
name component containing the full name of CSen.

3) App receives intApp, parses cname, and sends inter-
est intSen for cname.

4) Sen receives intSen, and responds with CSen.
5) App receives CSen, verifies the signature, and de-

crypts the data using its secret key.

Sen can encrypt and embed data in an authenti-
cated interest when notifying App. This way, applica-
tions do not need to wait a full RTT from the time
they receive the notification to the time they acquire
the sensor reading. Instead Sen only needs to issue
an interest with the name: “nameApp/data/auth-token”.
The field auth-token is encoded as timestamp ||
authenticator. The timestamp is used to prevent re-
play attacks. The authenticator part is a signature or
a MAC computed over nameApp/data/timestamp. The
data is the new data ready to be sent to App, and is encrypted
under pkApp or kApp using name encryption, that is, encrypting
the data and embedding it in one of the rightmost name
components.

On receipt of the authenticated interest, App ensures the
timestamp is current and proceeds to verify the signature
and decrypts data. Additionally, App can sign empty data in
response to notifications as an acknowledgement that the data
is received. If acknowledgements are required, Sen must retain
state for each acknowledgement not yet received from App.

For a low-powered sensor, ensuring delivery of data is an
intensive task specifically due to the energy and bandwidth.
Each notification using the protocol as described above re-
quires potentially expensive cryptographic operation for both
encryption and signing. This cost is proportional to the number
of applications and requires Sen to store a static list to notify
App. By introducing a proxy node, which facilitates commu-
nication between Sen and App, Sen can limit connectivity to
a single proxy using the same protocols as it would with App.
A proxy is equipped with a fixed power source and more
computing resources. The proxy can also retain a backlog of
data received by Sen for later querying by App using the pull
protocol.

Resilience against DoS Attacks. In the push data dissemina-
tion protocol, sensing and corresponding data delivery is not
triggered by an interest. Therefore, Sen cannot be victim of



DoS attack using the flooding mechanisms illustrated above.
On the other hand, with interest notification, App can be
inundated with interests, but this requires an adversary to issue
interests to each target namespace. The techniques in [16],
[9] can be used to detect and mitigate such interest flooding
attacks.

V. CONCLUSION

With the advent of the IoT and its convergence with critical
infrastructure such as building automation systems (BAS), se-
cure connectivity of resources constrained devices is becoming
increasingly important. This paper focused on the design of a
secure and efficient framework for connecting sensors with
applications over NDN. Our framework includes a trust model
that allows parties to authenticate sensor data, and fine-grained
access control mechanisms based on data encryption as well
as key attributes. We considered three types of sensors and
constructed corresponding communication protocols tailored
for NDN.
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