
Computer Networks 141 (2018) 57–66 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

USB side-channel attack on Tor 

Qing Yang 

a , ∗, Paolo Gasti b , Kiran Balagani b , Yantao Li c , Gang Zhou 

a 

a Department of Computer Science, College of William and Mary, Williamsburg, VA, USA 
b School of Engineering and Computing Sciences, New York Institute of Technology, New York, NY, USA 
c College of Computer & Information Science, Southwest University, Chong Qing, China 

a r t i c l e i n f o 

Article history: 

Received 14 January 2018 

Revised 19 May 2018 

Accepted 22 May 2018 

Available online 23 May 2018 

Keywords: 

Tor 

Side-channel attacks 

De-anonymization 

Privacy 

a b s t r a c t 

Tor is used to communicate anonymously by millions of daily users, which rely on it for their privacy, 

security, and often safety. In this paper we present a new attack on Tor that allows a malicious USB charg- 

ing device (e.g., a public USB charging station) to identify which website is being visited by a smartphone 

user via Tor, thus breaking Tor’s primary use case. Our attack solely depends on power measurements 

performed while the user is charging her smartphone, and it does not require the adversary to observe 

any network traffic or to transfer data through the smartphone’s USB port. We evaluated the attack by 

training a machine learning model on power traces from 50 regular webpages and 50 Tor hidden services. 

We considered realistic constraints such as different network types (LTE and WiFi), Tor circuit types, and 

battery charging levels. In our experiments, we were able to correctly identify webpages visited using the 

official mobile Tor browser with accuracies up to 85.7% when the battery was fully charged, and up to 

46% when the battery level was between 30% and 50%. Both results are substantially higher than the 1% 

baseline of random guessing. Surprisingly, our results show that hidden services can be identified with 

higher accuracies than regular webpages (e.g., 84.3% vs. 68.7% over LTE). 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Tor is an application-level low-latency network that enables

nonymous communication between a client and arbitrary Inter-

et servers. Tor uses a collection of onion routers [1] , hosted by a

umber of volunteers, to unlink the identity and the geographical

ocation of the client from the server, and to conceal the identity of

he server to any adversary that can observe the client’s network

ctivity (e.g., from the client’s Internet service provider). Users rely

n Tor to conceal their activities from hackers, governments, em-

loyers, and ISPs, since those might abuse, misuse, or accidentally

eak sensitive information. Further, Tor is frequently used to protect

he safety and security of political activists, to overcome commu-

ication restrictions, and to evade censorship. 

Given prior work on the security of widely-available public USB

harging stations [2] , in this work we investigate whether a ma-

icious charging station can infer which websites are accessed by

he Tor user while she charges her smartphones. The ability to de-

ermine which website is being accessed through Tor using power

onsumption information, rather than by observing network traf-

c, makes our technique a novel, hitherto unexplored, and poten-
∗ Corresponding author. 

E-mail addresses: qyang@email.wm.com , qyang@email.wm.edu (Q. Yang). 
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ially devastating attack vector. We consider this type of attack sig-

ificant, because: (1) political dissidents and human right activists

ely on Tor to dissociate speech from their identities [3] . Disclos-

ng which website they have visited is sufficient, in many circum-

tances, to endanger their freedom and life; (2) there is often a

orrelation between which website a user visits, and some of her

ensitive information, including health (e.g., if the user visits a fo-

um for cancer survivors, or a website providing advices to HIV

atients), political affiliation (e.g., when visiting a party’s website),

nd sexual orientation (e.g., when visiting an LGBT forum); and

3) the core purpose of Tor, as stated by its authors, is “to frus-

rate attackers from linking communication partners” [1] . There-

ore, disclosing which website is being visited by the user defeats

or’s purpose. 

ontributions. In this paper we introduce a new attack on Tor. This

ttack enables a malicious charging station to identify which web-

ite is being visited via Tor by smartphone users. Our attack relies

n power measurements performed while the user is charging her

martphone, and allows the adversary to determine which web-

ites are visited. 

In our evaluation, we were able to correctly identify websites

ccessed via the Orbot/Orfox Tor browser [4] with accuracies be-

ween 34.5% and 85.7% under realistic constraints, such as differ-

nt network types (LTE and WiFi) and battery levels (30%–50%, and

https://doi.org/10.1016/j.comnet.2018.05.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.05.018&domain=pdf
mailto:qyang@email.wm.com
mailto:qyang@email.wm.edu
https://doi.org/10.1016/j.comnet.2018.05.018
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Fig. 1. Loading time for six public webpages without Tor (upper plot) vs. using Tor 

(lower plot). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (s)
0 1 2 3 4 5 6 7 8 9 10

P
ow

er
 (

W
)

0

1

2

3

4

5

6

7

8
Loading google.com directly

Time (s)
0 1 2 3 4 5 6 7 8 9 10

P
ow

er
 (

W
)

0

1

2

3

4

5

6

7

8
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Fig. 2. Power traces collected during the first 10 s of loading google.com without 

Tor (upper plot) vs. using Tor (lower plot). The x axis shows time from the begin- 

ning of the webpage loading, and the y axis shows the power drawn from the USB 

port. 
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100%). In both cases, our accuracies were substantially higher than

the 1% baseline accuracy obtained using random guessing. Further,

our attack was successful in identifying not only regular webpages,

but also pages served by Tor hidden services, thereby increasing

the scope of the threats identified in this work. We consider this

a serious attack on Tor because: (1) public charging stations are

becoming widely available, making the attack scenario in this pa-

per very realistic and widespread, and (2) the level of privilege re-

quired to implement this attack is minimal, as it needs no access

to (or manipulation of) network traffic, no malicious servers, and

no exploitation of bugs in the Tor software. Because the security of

Tor is critical to guarantee the safety and freedom of a large num-

ber of users around the world, any low-privilege attack that reli-

ably and accurately infers user activity should be considered very

seriously. 

Energy and loading time impact of Tor. Accessing web content via

Tor has significant effects on webpage loading. When users browse

webpages using Tor, all requests and the corresponding responses

are forwarded by three Tor relays in the Tor circuit. Each relay

encrypts and decrypts all data in transit. Since the relays are ge-

ographically distributed, each packet can potentially travel a long

distance before reaching its destination, thus introducing large and

variable network delays. Further, because Tor circuits are composed

of randomly selected relays, each circuit can introduce different

delays, thus adding further uncertainty and inconsistency when

loading the same webpage. Finally, the construction of Tor circuits

consumes additional energy, thus adding background noises to the

power traces for webpage loading. 

To illustrate the effects of Tor on webpage loading, we mea-

sured the loading time of six webpages on a Samsung Galaxy S6

with and without Tor. We loaded each webpage 5 times. The re-

sults are shown in Fig. 1 . 

Using Tor not only increased the loading time (from 2 s to 10 s,

on average), it also introduced a larger variation within the load-

ing time. The average relative standard deviation of loading time

was 21.98% without Tor, and 40.54% with Tor. The effects of load-

ing webpages with Tor are further reflected in the power traces.

Fig. 2 shows the power traces collected while loading the home-

page of google.com . We compared the power trace when load-
ng the same webpage directly and using Tor (on the same smart-

hone and mobile browser). When loading google.com without

or, most of the energy is consumed within the first second. When

sing Tor, the energy consumption is spread across a longer pe-

iod (the first 7 s). The appearance of such random power patterns

eads us to question whether it is possible to identify webpages

ased on power signatures when using Tor. 

rganization. The remainder of this paper is organized as fol-

ows. We introduce our experiment setup and collected datasets in

ection 2 . Section 3 details our webpage identification technique.

valuation of our technique is presented in Section 4 . We review

he related work in Section 5 . Our conclusion and future work are

n Section 6 . 

. Data collection 

In this section, we first introduce the hardware, software, and

etwork setup for the collection of power traces. We then explain

ow webpages and Tor circuits are selected. Finally, we present de-

ails on all datasets used in this paper. 

.1. Experiment setup 

ower supply. We powered the smartphone using a Rigol DP832

ower supply [5] , set to 5.5 V when the smartphone battery

as fully charged, and to 9 V when the smartphone battery was

harging from 30%. The latter setting is supported by the Sam-

ung Galaxy S6 and other smartphones compatible with Qual-

omm Quick Charge [6] , and it resulted in a wider power con-

umption dynamic range. 

evice connection. As per USB charging specification [7] , we con-

ected the data pins (D+ and D - ) of the USB cable using a 200 �

esistor to allow for charging currents above 500 mA. To measure

he instantaneous smartphone power consumption from the USB

ort, we inserted a 0.1 � shunt resistor on the GND wire of the

SB cable, and measured the voltage drop across the resistor using

 National Instruments USB-6211 DAQ [8] . The DAQ was set to use

 sampling rate of 200 kHz. We connected the DAQ’s output port

o a Thinkpad T440P laptop, which was used to store the power

races using the LabView software. 
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Table 1 

50 webpages selected from Alexa top non-adult websites (as of Dec 2016). 

google.com amazon.com ebay.com microsoft.com fc2.com 

facebook.com twitter.com wordpress.com vk.com snapdeal.com 

youtube.com sina.cn msn.com apple.com ask.com 

yahoo.com weibo.cn pinterest.com imdb.com stackoverflow.com 

wikipedia.org ok.ru paypal.com office.com netflix.com 

dailymail.co.uk stackexchange.com booking.com indeed.com salesforce.com 

nytimes.com daum.net dropbox.com whatsapp.com nicovideo.jp 

thepiratebay.org wikia.com pixnet.net coccoc.com adf.ly 

espn.com bbc.com sogou.com blogger.com mail.ru 

github.com cnn.com naver.com rakuten.co.jp adobe.com 

Table 2 

50 random selected hidden services (all with .onion as domain name suffix). 

rougmnvswfsmd4dq yuxv6qujajqvmypv nql7pv7k32nnqor2 s5q54hfww56ov2xc sblib3fk2gryb46d 

ityukvsoqjgzcimm kxojy6ygju4h6lwn cashis7ra6cy5vye 3g2upl4pq6kufc4m fdwocbsnity6vzwd 

65px7xq64qrib2fx fzqnrlcvhkgbdwx5 clockwise3rldkgu libertygb2nyeyay xmh57jrzrnw6insl 

hss3uro2hsxfogfq kpynyvym6xqi7wz2 fbcy5ylyoeqzqzcr undergunbgzlc2ey o6klk2vxlpunyqt6 

vu2wohoog2bytxgr xfnwyig7olypdq5r 54ogum7gwxhtgiya slwc4j5wkn3yyo5j c3jemx2ube5v5zpg 

answerstedhctbek tfwdi3izigxllure gjobqjj7wyczbqie ll6lardicrvrljvq aaaajqiyzj34rhjm 

drystagepmi5msdm greendrgfjz7ks5f 4yjes6zfucnh7vcj abbujjh5vqtq77wg b34xhb2kjf3nbuyk 

usjudr3c6ez6tesi 76qugh5bey5gum7l djypjjvw532evfw3 grams7enufi7jmdl w363zoq3ylux5rf5 

nare7pqnmnojs2pg kbvbh4kdddiha2ht qputrq3ejx42btla zqktlwi4fecvo6ri ccxdnvotswsk2c3f 

flibustahezeous3 74ypjqjwf6oejmax tetatl6umgbmtv27 jmkxdr4djc3cpsei hss3uro2hsxfogfq 
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Table 3 

Configurations used to collect power trace datasets. We collected 

datasets #7 and #8 under the same settings as #1 and #2. How- 

ever, to minimize the effect of time difference on the identifica- 

tion accuracy when comparing two different phones, #7 and #8 

were collected within 12 h of each other’s time, while #1 and 

#2 were collected two days apart. 

Dataset Phone Circuit Network Battery Level 

1 A Automatic WiFi 100% 

2 B Automatic WiFi 100% 

3 A Automatic LTE 100% 

4 B Automatic WiFi 30% to 50% 

5 A Fixed #1 WiFi 100% 

6 B Fixed #2 WiFi 100% 

7 A Automatic WiFi 100% 

8 B Automatic WiFi 100% 
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or software setup. To collect power traces, we used the official Tor

pps on Android, Orbot [9] and Orfox [4] , on two Samsung Galaxy

6 smartphones, denoted as phone A and phone B in the rest of

his paper. Orbot implements a local proxy that provides access to

he Tor network. Orfox is a web browser based on the smartphone

ersion of Firefox. It enhances Firefox by including features that

mprove user privacy, such as HTTPS Everywhere [10] . Further, it

isables the execution of JavaScript code by default. 

We connected Orfox to Tor using the Orbot instance on the

martphone. To collect data reliably, we modified Orfox by dis-

bling the Android flag FLAG_SECURE to enable screenshot once

 web page was loaded. This was used to manually verify that all

ages were loaded successfully. We also implemented a Tor option

hat enables manual selection of the second relay, so as to create a

fixed” Tor circuit. 

ower trace collection. To load each webpage automatically, we de-

eloped an Android background service that cycled through our

ebpages (listed in Tables 1 and 2 ). After loading each webpage,

he service paused for 12 s, and then logged which URL that was

oaded, together with the corresponding timestamp, to a file on the

martphone. 

We synchronized each power trace with the corresponding URL

sing the following process. Before collecting each dataset (see

able 3 ), we used the same NTP server to synchronize the clocks

f the smartphone and of the laptop used for recording the power

races. We then used the timestamps in the smartphone log file

nd in the power traces to align the first data point associated with

ach URL. 

etworks. We loaded all webpages using the WiFi network on the

ampus of The College of William & Mary, and via the T-Mobile

TE network in Williamsburg. 

.2. Datasets 

To collect data, we used two types of Tor circuits—fixed, and

utomatic—to retrieve regular webpages, and to access Tor hidden

ervices [11] . Details follow. 
ollection of data from Tor hidden services. In contrast with servers

n the public Internet, Tor hidden services are accessible only us-

ng the Tor network. Hidden service providers reside on Tor re-

ays or Tor clients, and offer various services including web host-

ng, instant messaging, and SSH, while hiding the hidden service IP

ddresses. Each Tor hidden service hides behind several “introduc-

ion” relays in the Tor network. When visiting a hidden service, the

or client first downloads the service’s public descriptor (identified

y a unique 16-character name followed by “.onion”). Then, it cre-

tes a Tor circuit to a randomly selected “rendezvous” relay, and it

ends the rendezvous relay’s address to the hidden service through

ne introduction relay. The hidden service creates a Tor circuit to

he rendezvous relay, and the client uses the “rendezvous” relay to

xchange encrypted messages with the hidden service. In the rest

f this paper, we refer to the webpages hosted on public Internet

ervers as “public webpage”, and to web content hosted on hidden

ervices as “hidden service”. 

We collected power traces while loading selected public web-

ages and hidden services. Tables 1 and 2 list all websites used

n our experiments. For public webpages, we selected the home

ages of the 50 most popular non-adult websites accessible via

or, based on the Alexa ranking. We excluded public webpages that

o not display content without JavaScript, because Orfox disables

avaScript by default. For hidden services, we randomly selected 50
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Fig. 3. Spectrogram analysis on power traces sampled while loading six different 

websites. 
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Fig. 4. Features extracted from segments of power traces based on spectrogram 

analysis. 
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f  
websites from The Hidden Wiki [12] that were consistently avail-

able during the experiments. Because 100 webpages represent only

a small portion of the Web, we consider this work as a proof of

concept. However, even with this restriction, our results conclu-

sively show that substantial information is leaked when the ad-

versary is able to monitor power consumption during page load. 

Selection of Tor circuits. When a Tor client builds a circuit, it first

selects three relays from a public directory. The client then con-

nects to the first relay (“entry”), and it uses this relay to extend

the circuit to the second relay (“middle”). The client finally uses

the first two relays to extend the circuit to the last relay (“exit”).

As it constructs the circuit, the client shares a unique symmetric

key with each relay. 

We performed our experiments using two types of Tor circuits:

“automatic”, and “fixed”. For automatic circuits, we allowed Orbot

to select a new circuit for each webpage loading using the default

path selection protocol [13] . By default, the entry relay is selected

among a small group of long-term entry servers ( guard nodes),

and it does not change for a relatively long time. However, Or-

bot settings allow the user to disable using entry guard by setting

“UseEntryGuards” to 0. We used this option in our experiments to

model the inability of the adversary to use the same Entry Guard

as the user. 

The circuit used to load a specific webpage changes every

10 min by default. Because in our data collection the time between

collection of subsequent traces from the same webpage is larger

than 30 min, power traces from the same website were collected

using different circuits. 

With the fixed circuits, we manually chose all three Tor nodes

in the circuit and used them to load all webpages. In our dataset,

we denoted the circuit composed of anonymiton (in Germany,

entry node), torfa (in Hungary, middle node), and Hermes (in

France, exit node) as “Cir-1”. We denoted the following circuit as

“Cir-2”: inky (in Switzerland, entry), cry (in Netherlands, mid-

dle), and hessel1 (in Romania, exit). Although in practice Orbot

(or any modern Tor implementation) does not use a fixed circuit

for loading multiple webpages, we used this type of circuits to

evaluate the scenario where training and testing data were col-

lected under conditions that were as consistent as possible. This

allowed us to quantify the loss of accuracy due to noise induced

by the use of different Tor circuits in training and testing. 

The datasets used in our experiments are listed in Table 3 . For

each configuration, we loaded all 100 URLs once, and then re-

peated this process 40 times. If a webpage did not load success-

fully, we replaced that trace with a new one from the same URL,

collected at the end of the data collection session. As a result, each

dataset is composed of 40 power traces for each of the 100 URLs.

The duration of each trace is 10 s , because this allowed Orfox to

load almost all webpages completely. 

Effects of User Interaction on Power Traces. Prior work [2] has

shown that user interactions, such as taps and swipes on the

smartphone’s touchscreen, affect power traces, and therefore the

success rate of the attack. For example, in [2] user interactions de-

creased the attack’s success rate by 16.7%–25.7%. We expect that

user interactions have similar effects on traces collected using Tor. 

3. Feature selection and classification 

To identify the public webpages and hidden services loaded on

the smartphone, we first extracted time- and frequency-domain

features from the power traces, and then trained a Random For-

est classifier on the resulting feature vectors. We used the trained

classifier to predict the webpages on new power traces. 
.1. Feature selection 

We experimented with time-domain features, such as mean,

MS, and correlation coefficient, and frequency-domain features

ased on simple FFT, cepstrum analysis [14] , and spectrogram anal-

sis. Our experiments demonstrated that features based on spec-

rogram analysis led to higher accuracies compared to other tech-

iques. For instance, spectrogram features led to an increase in ac-

uracy of up to 16% compared to FFT features. Fig. 3 illustrates that

ifferent webpages have distinctive frequency spectrum patterns,

here the magnitude values in most frequencies are significantly

ifferent among these webpages. We further divided each power

race into several overlapping 0.5-s segments. We calculated the

pectrogram of each segment (using window length of 10 0 0 sam-

les, and 50% overlap between windows). The spectrogram results

ontain the magnitudes of frequencies in the range of 0 Hz ∼
00 kHz. We divided this range into 125 equal-size bins to reduce

he effects of noise of individual frequencies, and calculated the

verage magnitude of all the frequencies in each bin as its cor-

esponding feature, thus transforming each power trace segment

nto a feature vector of 125 elements, as shown in Fig. 4 . We can

bserve that the feature vectors between different webpages are

ignificantly more obvious than between traces for the same web-

age. 

.2. Classification 

The classification problem can be abstracted as follows. We

se X = (x 1 , x 2 , . . . , x p ) to denote a feature vector with p features.

ariable Y represents possible classes 1 , 2 , . . . , K. Given a training

ataset S with N observations ( X i , Y i ), we first use S to train a clas-

ifier ˆ C (X ) ∈ { 1 , 2 , . . . , K} , and then use ˆ C (X ) to predict the classes

f testing feature vectors. 

We used Random Forests [15] for classifier training. A random

orest consists of a set of decision trees. We use B to denote the
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Table 4 

Webpage identification accuracy using WiFi and 100%-charged battery (basic 

configuration). 

Phone All webpages Public webpage only Hidden service only 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

A 79.05 % 88.7% 76.3% 88.1% 87.3% 93.2% 

B 85.7% 92.6% 82.2% 93.2% 89.2% 94.9% 

Fig. 5. Loading time for six hidden services using Tor. 

Fig. 6. Identification accuracy comparison among (1) hidden services, (2) public 

webpages with content changes, and (3) public webpages without content changes. 
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umber of decision trees to build for a random forest. There are

hree steps to train the random forest: (1) from dataset S , each

ime we randomly draw N observations with replacement to cre-

te a bootstrap dataset S b for b = 1 , 2 , . . . , B, (2) from each S b , we

rain a decision tree C ( S b , X ), and (3) the random forest classifier

s the ensemble of all C ( S b , X ), and it uses majority vote to make

rediction on testing feature vectors. 

In the following, we give details of the above step (2). Each

ecision tree is built from the root node. At each node, we ran-

omly select a subset of all the p features, denoted by F =
 x ∗1 , x 

∗
2 , . . . , x 

∗
m 

} , m = � log 2 p + 1 � . For each feature x ∗
i 
, i = 1 , 2 , . . . , m,

e use G i to denote the set of all possible x ∗
i 

values in the dataset.

e try each possible test x ∗
i 

< g, g ∈ G i to split the current node,

nd choose the test that generates the largest “information gain”.

o calculate the information gain, at each node, assuming P i is the

ccurrence probability of class i, i = 1 , 2 , . . . , K, we first calculate

he Shannon entropy as: 

 = 

K ∑ 

i =1 

P i log 2 P i (1) 

ssume that the entropy at current node is H . After a splitting,

here are L percent of observations in the left child and R percent

f observations in the right child. We use H L and H R to denote the

ntropy at the left and right child, respectively. Then the average

ntropy after splitting is: 

 A f ter = H L × L + H R × R (2)

he information gain of a splitting is defined as (H − H A f ter ) . At

ach node, our goal is finding the splitting to: 

aximize (H − H A f ter ) (3) 

he above process recurses on each child until a stopping condition

s satisfied, such as all observations in the node belong to the same

lass, or the maximum tree depth has been reached. 

After all decision trees are trained, the random forest classifier

s defined by: 

ˆ 
 (X ) = ma jority _ v ote { C(S b , X ) } , b = 1 , 2 , . . . , B (4)

We used the WEKA [16] implementation of Random Forests.

or each of our experiment scenario, we used 20 power traces per

ebpage to train the classifier, and the other 20 power traces per

ebpage for testing. We trained the classifier using segments of

ll training traces. To identify a testing power trace, we first clas-

ified all the segments of this trace, and then used majority voting

f these segments to determine the class of this trace. 

. Performance evaluation 

We first present the identification accuracies of our technique

or our basic configuration (i.e., using WiFi and fully-charged bat-

ery). We then discuss how different variables, including using dif-

erent phones for training and testing, network types, and battery

harging levels, affect identification accuracy. 

.1. Identification accuracy for basic configuration 

We list the datasets corresponding to our basic configuration

s #1 and #2 in Table 3 . We evaluated the following three cases:

1) using all traces for both public webpages and hidden services;

2) using traces from public webpages for training and testing; (3)

sing traces from hidden services for training and testing. In each

ase, we used half traces for training, and the other half for test-

ng. The results are shown in Table 4 , which includes Rank-1 and

ank-5 identification accuracies. With Rank-1, a trace is classified

orrectly if its label is the output of the classifier with the highest
onfidence. With Rank-5, traces are considered correctly classified

f their label appear among the 5 labels identified by the classifier

ith the highest confidence. 

We were able to identify hidden services with higher accuracy

87.3%) than public webpages (76.3%), as shown in Fig. 6 . There are

wo possible reasons for the accuracy difference between public

ebpages and hidden services. First, we measured the loading time

f six hidden services (shown in Fig. 5 ). We observed that, com-

ared to public webpages (see Fig. 1 ), the loading time of hidden

ervice is more consistent (19.82% relative standard deviation, on

verage, compared to 40.54% for public webpages) and has smaller

ange (from 3.25 s to 10.63 s, compared to 2.81 s to 23.63 s for

ublic webpages). Possible reasons for these differences include:

1) hidden services are mostly simple static webpages; and (2)

heir contents rarely change over a long time . In contrast, public

ebpages usually contain large-size elements. Since public web-

ages need longer loading time than hidden services, they have a

igher chance of being influenced by the instability of Tor circuits.

s a result, there are more inconsistency and noise in the training

nd testing power traces of public webpages. 

Second, we examined the screenshots for each webpage load-

ng, and we found none of the 50 hidden services changed their

isplayed contents during the data collection period (about 1 day).

n comparison, 31 of the 50 public webpages displayed different

ontents during the collection, which further affects the consis-

ency among power traces of public webpages. Fig. 6 shows that

ublic webpages without content changes have higher average ac-

uracy than public webpages with content changes. 

The content changes of public webpages are either due to fre-

uent website updates (e.g. for news websites), or because differ-

nt versions of the webpage were loaded based on the geographi-
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Table 5 

Webpage identification accuracy using different phones for training and testing. 

Train Test All webpages Public webpage only Hidden service only 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

A B 43.13% 70.3% 48.75% 80.15% 47.05% 77.45% 

B A 36.58% 63.78% 43.2% 74.7% 40.35% 69.3% 

Table 6 

Webpage identification accuracy using LTE. 

All webpages Public webpage only Hidden service only 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

71.75% 84.7% 68.7% 84.4% 84.3% 93.2% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Loading time of public webpages using LTE network. 
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cal location of the Tor exit relay. For example, we checked the four

public webpages with identification accuracy lower than 40%, and

we found two of them were loaded with different versions (based

on website language, content, and layout): there were 9 versions

for paypal.com (with accuracy of 30%), and three versions for

dropbox.com . (with accuracy of 25%). 

To improve the identification accuracy, we tried to use a specific

version of these websites for training and testing. For example, we

used the traces for paypal.com/de instead of paypal.com and

re-conducted the whole training and testing. The identification ac-

curacy was improved from 30% to 90% for this specific webpage,

and it increased from 79.05% to 79.65% for all webpages. 

4.2. Impact of training and testing on different smartphones 

When we used the dataset collected from smartphone A to

train the model and used the model to identify traces from smart-

phone B, the original classification method did not provide good

results. To address this issue, we modified the model as follows. By

examining the spectrograms of power traces from different phones,

we observed that beyond a specific frequency (about 3 KHz), the

difference in magnitude distribution among spectrograms depends

more on the smartphone being used than the webpage being

loaded. To address this issue, we increased the frequency resolu-

tion of the spectrogram, and we used the magnitudes of the first

250 frequency points (ranging from 0 Hz to 3039.6 Hz) as the fea-

ture vector for each power trace. We then used Sequential Minimal

Optimization (SMO) algorithm [17] for model training and testing.

The resulting identification accuracies using two phones are pre-

sented in Table 5 . 

Even though the accuracy decreases when training and testing

on different smartphones (36.58% to 43.13% for all webpages using

two phones, compared to 79.05% to 85.7% using the same smart-

phone for training and testing), it is still significantly higher than

that of random chance at 1%. 

4.3. Impact of network characteristics 

In dataset #3, we collected training and testing traces using LTE

network. The results in Table 6 show that the identification accu-

racy when training and testing on LTE (71.75%) is worse than that

when using WiFi (79.05%, see Table 4 ). Consistently with our ex-

periments based on WiFi, we observed that the accuracy for public

webpages is lower than that of hidden services, and the accuracy

decrease for public webpages (68.7% using LTE, compared to 76.3%

using WiFi) is larger than the decrease for hidden services (84.3%

using LTE, compared to 87.3% using WiFi). 

One possible explanation is that LTE network contributes to ad-

ditional noise in the power traces, compared to WiFi. We mea-

sured the loading time of six public webpages using LTE. The re-
ults are shown in Fig. 7 . Compared with the results of using WiFi

see Fig. 1 ), the average loading time increased by 9.1%, which in-

icates that LTE introduced more unpredictable delays than WiFi. 

We also trained the model with WiFi traces, and tested it using

TE traces, and vice versa. The identification accuracies shown in

able 7 are significantly lower than that when using LTE traces for

oth training and testing. This indicates that the adversary needs

o train a different model for each network. 

.4. Impact of battery charging level 

When the smartphone is charging, a large part of power is used

o charge the battery. In contrast, when the battery is fully charged,

lmost all current from the charger is used to power the phone, in-

luding loading the webpage. Thus, battery charging level impacts

he amount of information that can be inferred from the power

race on webpage loading. We collected the power traces for 30%

o 50% battery level. Before each round of the collection, we dis-

harged the phone battery to 30%. Then we shuffled the 100 web-

ages into a random sequence, and we collected one trace for each

ebpage following this sequence. After collecting all 100 traces in

ne round, the battery level increased to about 50%. Then we dis-

harged the battery to 30% again and repeated the above collection

rocess. This process was repeated 40 times in total. Dataset #4

ncludes the traces collected while the smartphone charging level

as between 30% and 50%. 

We used half of dataset #4 for training, and the other half for

esting. The identification results are shown in Table 8 . Although

ccuracy decreases sharply when the battery is not fully charged,

t is still significantly higher than the baseline accuracy using ran-

om guessing (i.e., 1% for all the 100 webpages, and 2% for the

0 public webpages or 50 hidden services). One reason is that the

aximum charging current is capped by an upper limit (1.15 A in

his case), which is imposed by the smartphone’s charging circuit

see Fig. 8 ), where 98.17% of the samples in the power trace have

urrent value below 1.15 A. This limitation distorts the power sig-

als and decreases the effectiveness of our technique. Further, we

ound that there were strong noisy signals periodically appearing

n each trace. The same signals did not appear in the power traces

ollected when the battery was fully charged. 
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Table 7 

Cross testing using LTE and WiFi networks. 

Train Test All webpages Public webpage only Hidden service only 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

WiFi LTE 24.55% 49.4% 24.25% 54.2% 42.9% 69.8% 

LTE WiFi 21.8% 47.25% 21% 47.05% 28.15% 63.2% 

Table 8 

Webpage identification accuracy when battery level is from 30% to 

50%. 

All webpages Public webpage only Hidden service only 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

36% 52.1% 34.5% 58.5% 46% 65.9% 

Time (s)
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Fig. 8. Capped current when smartphone battery is partially charged. 
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.5. Impact of Tor circuits type 

We evaluated the scenario in which training and testing data

ere collected using the same fixed circuit. The corresponding

atasets are indicated as #5 and #6 in Table 3 . Table 9 reports the

dentification accuracies when using fixed circuits “Cir-1” and “Cir-

” on different phones. Com pared to the results in Table 4 obtained

sing automatic circuits, accuracies are not significantly higher, or

re even lower in some cases. One possible explanation is that the

hroughput of each relay in the fixed circuits are always changing.

his adds unpredictable delays for each webpage loading and in-

reases the inconsistency between power traces for training and

esting. In our experiments, we observed that during some peri-

ds the fixed circuits could not be used to load any webpages at

ll. In contrast, automatic circuits are constructed using optimized

ath selection protocol. In practice, our experiments show that the

dversary should use automatic circuits to collect training traces. 

.6. Comparison of the attack with and without Using Tor 

Previous work [2] evaluated the effectiveness of using power

races to identify webpages on smartphones. However, it did not

onsider web browsing anonymization techniques, such as Tor. In

his section, we investigate the impact of Tor on identification ac-

uracies by comparing our results with the accuracies reported

n [2] . 

Collection of power traces in this work and in [2] was per-

ormed using the same procedures and parameters, with the ex-

eption of trace length. Because webpage loading is usually com-

leted within 2 s when not using Tor, and in 10 s with Tor

see Fig. 1 ), we compare our results with 2-second traces results

rom [2] . Table 10 summarizes the identification accuracy when

oading webpages via WiFi. 1 
1 In [2] , authors report webpage identification accuracy on a Galaxy S6 exclu- 

ively on WiFi. 

h  

w  

h  

a  
We observe that when the battery is fully charged, we achieved

imilar identification accuracies (82.2% with Tor vs. 84.3% w/o Tor).

hen the battery level is between 30% and 50%, the drop in web-

ite identification accuracy is more pronounced with Tor, although

till substantially higher than the random-selection baseline of 2%. 

. Related work 

In this section, we review related work on attacks on Tor

 Section 5.1 ), and on side-channel attacks based on power analy-

is ( Section 5.2 ). 

.1. Attacks on Tor 

There are a number of papers that focus on attacks on Tor.

hese papers can be broadly categorized into passive attacks (i.e.,

ased on traffic analysis) and active attacks (based on traffic mod-

fication). 

assive attacks based on traffic analysis. Fingerprinting attacks and

raffic confirmation attacks belong to this category. Website finger-

rinting attacks enable an attacker to detect patterns that are in-

icative for webpages in Tor traffic. Herrmann et al. [18] presented

 method that applies common text mining techniques to the nor-

alized frequency distribution of observable IP packet sizes, so as

o reveal requested websites. Panchenko et al. [19] showed that

or did not offer sufficient security against website fingerprinting.

heir attack relies on volume, time, and direction of the traffic to

eveal websites. Cai et al. [20] presented a webpage fingerprinting

ttack that was able to defeat several defenses against traffic analy-

is attacks, such as application-level defenses HTTPOS and random-

zed pipelining over Tor. Abbott et al. [21] provided an attack to

dentify a fraction of the Tor users who used malicious exit nodes.

his attack tricked a user’s web browser into sending a distinctive

ignal over the Tor network. Such signal could be detected by traf-

c analysis. 

In traffic confirmation attacks, the adversary must be able to

avesdrop both ends of a communication over a long time pe-

iod. Levine et al. [22] investigated timing analysis attacks on low-

atency mixed systems, and proposed a technique named defen-

ive dropping to mitigate timing attacks. Hopper et al. [23] pre-

ented two attacks on low-latency anonymity schemes using the

etwork latency information. The first attack allowed a pair of

olluding websites to predict whether two connections from the

ame Tor exit node are using the same circuit. The second at-

ack enabled a malicious website to gain location information

bout a client when he visits the website. Sun et al. [24] pro-

osed asymmetric traffic correlation attack on Tor with high ac-

uracy, and increased the threat of AS-level attacks significantly.

auer et al. [25] demonstrated that routing optimization prevents

or from providing strong anonymity. They proposed attacks using

ow-resource Tor nodes to compromise the entrance and exit nodes

n Tor circuits. Kwon et al. [26] presented a passive attack against

idden services and their users using circuit fingerprinting attack,

here the adversary can identify the presence of client or server

idden service activities. Murdoch et al. [27] introduced traffic-

nalysis techniques based on a partial view of the network. Their
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Table 9 

Webpage identification accuracy using fixed Tor circuits. 

Phone Circuit All webpages Public webpage only Hidden service only 

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5 

A Cir-1 78.1% 89.8% 79.6% 91.6% 84.8% 93.8% 

B Cir-2 82.6% 91.3% 85.7% 93.4% 86.1% 93.7% 

Table 10 

Comparison of webpage identification accuracy with and without 

Tor. 

Battery fully charged Battery 30% Charged 

Not using Tor 84.3% 75.2% 

Using Tor 82.2% 34.5% 
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attack could infer the nodes used to relay the anonymous streams

and therefore reduced Tor anonymity. Chakravarty et al. [28] pre-

sented a remotely-mounted attack to expose the network iden-

tity of an anonymous client, hidden service, or anonymizing proxy.

They employed single-end bandwidth estimation tools and a col-

luding network entity to modulate traffic directed to the victim. 

Some passive side-channel attacks try to infer sensitive infor-

mation other than user identities or traffic destinations from web

application usage. For instance, Schaub et al. [29] presented an at-

tack on web search engines to retrieve the user’s search query in-

puts. They first intercepted and analyzed the packet flow associ-

ated with the suggest boxes from the search engine for each input

character, then built a probability distribution of packet sizes for

each letter. They proposed a stochastic algorithm that utilized the

distribution probabilities to infer the complete query text. 

Our work differs from the above studies mainly in the follow-

ing aspects: (1) the attack presented in this paper is based on USB

power analysis, rather than network traffic analysis or modifica-

tion; (2) in our model, the goal of the adversary is to learn which

websites have been accessed by Tor users, rather than to obtain the

user’s inputs entered in a search engine; (3) we focus on web page

identification for both regular web pages and web pages served

by Tor hidden services; and (4) we study a side-channel attack on

smartphones, rather than on desktop or laptop computers. 

Active attacks against Tor. Wang et al. [30] investigated the funda-

mental limitations of flow transformations in achieving anonymity.

They showed that flow transformations could not necessarily pro-

vide the level of anonymity people expected or believed. Barbera

et al. [31] introduced a new Denial-of-Service attack against Tor

Onion Routers. They exploited a design flaw used by Tor software

to build virtual circuits. Their attack only needed a fraction of

the resources required by a network DoS attack to achieve simi-

lar damage on the Tor network. 

Our work differs from the above papers because it does not re-

quire active changes to the content of webpages, or traffic injection

or manipulation. 

5.2. Side-channel attacks based on power analysis 

Clark et al. [32] measured power consumption data collected

from hacked wall outlets to identify webpages loaded on comput-

ers. Genkin et al. [33] analyzed electric potential from computer

chassis to extract encryption keys. Yang et al. [2] first presented

an attack on mobile devices that allows the adversary to iden-

tify loaded webpages while the smartphone is charging by con-

trolling the USB charging port. The main differences between our

attack, and the attacks presented in these papers are: (1) all power

traces used in this paper were collected while using Tor. This af-
ects traces in several important ways, because the use of Tor leads

o the generation of complex power patterns due to circuit types

nd composition, and geographic location of the Tor routers in a

ircuit; and (2) besides regular webpages, we also consider hidden

ervices that are exclusively existent in Tor network. 

.3. Covert channels and attack countermeasures 

Covert channels can be used for surreptitious exfiltration of

ensitive data. Spolaor et al. [34] developed a covert system to

end data as power bursts from a smartphone to a malicious

harging station. Zhang et al. [35] demonstrated that it is possi-

le to build a covert communication channel by adjusting the si-

ence periods of VoLTE traffic on smartphones. In general, covert

hannel attacks require the smartphone to run a malicious apps

or data transmission purpose, while our applies to otherwise non-

ompromised devices. 

Countermeasures to side-channel attacks have been investi-

ated in several papers. Kocher [36] proposed strategies to design

nd validate cryptographic devices against power-analysis attack,

uch as using short-lived session keys instead of a long-lived ini-

ial key. More generally, Meng et al. [37] discussed how to apply

lockchain techniques to protect data privacy among collaborative

ntrusion detection systems. Because the focus of our work is to

ropose and evaluate a new side-channel attack on Tor, we con-

ider the study of countermeasures as future work. 

. Conclusion and future work 

In this paper, we demonstrated a technique based on USB

ower analysis that allows a malicious charging station to iden-

ify which webpages are loaded on a smartphone using Tor. To our

nowledge, this is the first work to study attacks on Tor based on

martphone power side-channels. 

We validated our attack under realistic smartphone constraints

y collecting and analyzing power traces under several scenarios,

ncluding different networks (WiFi and LTE), different devices, and

ifferent battery charging levels. 

We correctly identified webpages visited using the official mo-

ile Tor browser. We achieved accuracies between 36.58% and

5.7% when the battery was fully charged, and between 34.5% and

6% when the battery level was at 30%–50%. In comparison, ac-

uracy obtained by random website selection is 1% for all web-

ites, and 2% when considering hidden services or public webpages

lone. 

We consider this work the first step towards a full characteri-

ation of power side-channel attacks on Tor. To this end, there are

everal combinations of variables that we did not consider, includ-

ng user interactions during webpage loading. We leave this and

ther configurations to future work. Additionally, we plan to ad-

ress countermeasure to the attack presented in this paper in fu-

ure work. 
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